Applied Biochemistry and Biotechnology

, Volume 188, Issue 2, pp 460–480 | Cite as

Drier Climatic Conditions Increase Withanolide Content of Withania coagulans Enhancing Its Inhibitory Potential Against Human Prostate Cancer Cells

  • Samiya RehmanEmail author
  • Ken Keefover-Ring
  • Ihsan ul Haq
  • Erum Dilshad
  • Mohammad Imran Khan
  • Nosheen Akhtar
  • Bushra Mirza


Prostate cancer is one of the major causes of cancer-related deaths in men and there is a growing interest in identifying natural compounds for its management. We analyzed bioactive withanolides in Withania coagulans from 11 different sites in Pakistan and evaluated the antiprostate cancer activities of leaf extracts from two sites with the greatest amounts. Total withanolide concentration differed by ~ 17-fold between sites, ranging from 1.01 ± 0.01 mg/g dry weight (mean ± SE) at Jand to 16.83 ± 0.02 mg/g at Mohmand Agency. Different tissues varied in their total withanolide content with roots having the least (0.42 ± 0.07 mg/g dry weight) and leaves the most (2.45 ± 0.45 mg/g). We found strong inverse correlations between site annual precipitation versus withanolide amounts in fruits (r = − 0.84, P = 0.001), leaves (r = − 0.88, P < 0.001), roots (r = − 0.91, P < 0.001), and total (r = − 0.89, P < 0.001), but not stems (r = − 0.20, P = 0.556). Extracts made from Mianwali and Mohmand Agency leaves possessed high anticancer activity in terms of increased induction of apoptosis and decreased cell viability, cell proliferation, invasion, and migration of different prostate cancer cell lines. These results are useful for the selection of withanolide-rich germplasm with potent anticancer properties.


Prostate cancer Withania coagulans Withanolides Climatic conditions Ecotypes Anticancer properties 



3-(45-Dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide




Mianwali leaf extract


Mohmand Agency leaf extract


High-performance liquid chromatography


Ultra-high performance liquid chromatography-mass spectrometry



The authors are very thankful to Dr. Hammad Ismail, Department of Biotechnology and Biochemistry for statistical help.

Funding Information

The Higher Education Commission of Pakistan provided funding for this research.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12010_2018_2933_MOESM1_ESM.jpg (773 kb)
ESM 1 (JPG 773 kb)


  1. 1.
    Maurya, R. (2010). Chemistry and pharmacology of Withania coagulans: an Ayurvedic remedy. Journal of Pharmacy and Pharmacology, 62(2), 153–160.CrossRefGoogle Scholar
  2. 2.
    Mirjalili, M., Moyano, E., Bonfill, M., Cusido, R., & Palazón, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14(7), 2373–2393.CrossRefGoogle Scholar
  3. 3.
    Salehi, M., Aghamaali, M. R., Sajedi, R. H., Asghari, S. M., & Jorjani, E. (2017). Purification and characterization of a milk-clotting aspartic protease from Withania coagulans fruit. International Journal of Biological Macromolecules, 98, 847–854.CrossRefGoogle Scholar
  4. 4.
    Atta-ur-Rahman, Dur-e-Shahwar, Naz, A., & Choudhary, M. I. (2003). Withanolides from Withania coagulans. Phytochemistry, 63, 387–390.CrossRefGoogle Scholar
  5. 5.
    Hemalatha, S., Wahi, A. K., Singh, P. N., & Chansouria, J. P. N. (2004). Hypoglycemic activity of Withania coagulans Dunal in streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 93(2-3), 261–264.CrossRefGoogle Scholar
  6. 6.
    Hemalatha, S., Wahi, A. K., Singh, P. N., & Chansouria, J. P. N. (2006). Hypolipidemic activity of aqueous extract of Withania coagulans Dunal in albino rats. Phytotherapy Research, 20(7), 614–617.CrossRefGoogle Scholar
  7. 7.
    Hoda, Q., Ahmad, S., Akhtar, M., Najmi, A. K., Pillai, K., & Ahmad, S. J. (2010). Antihyperglycaemic and antihyperlipidaemic effect of poly-constituents, in aqueous and chloroform extracts, of Withania coagulans Dunal in experimental type 2 diabetes mellitus in rats. Human & Experimental Toxicology, 29(8), 653–658.CrossRefGoogle Scholar
  8. 8.
    Chadha, Y. (1976). The wealth of India (ed ed.). New Delhi: Publication and Information Directorate CSIR.Google Scholar
  9. 9.
    Bharti, S. K., Kumar, A., Sharma, N. K., Krishnan, S., Gupta, A. K., & Padamdeo, S. R. (2012). Antidiabetic effect of aqueous extract of Withania coagulans flower in Poloxamer-407 induced type 2 diabetic rats. Journal of Medicinal Plants Research, 6, 5706–5713.Google Scholar
  10. 10.
    Kirthikar, K. R., & Basu, B. D. (1933). Indian medicinal plants (2nd ed.). Delhi: Bishen Singh Mahendra Pal Singh.Google Scholar
  11. 11.
    Dymock, W., Warden, C. J. H., & Hooper, D. (1893). Pharmacographia indica. In P. Kegan (Ed.), Trench. London: Trubner & Co..Google Scholar
  12. 12.
    Bown, D. (1995). Encyclopedia of herbs and their uses. London: Dorling Kindersley.Google Scholar
  13. 13.
    Chevallier, A. (1996). The encyclopedia of medicinal plants. London: Dorling Kindersley.Google Scholar
  14. 14.
    Maurya, R., Akanksha, Jayendra, Singh, A. B., & Srivastava, A. K. (2008). Coagulanolide, a withanolide from Withania coagulans fruits and antihyperglycemic activity. Bioorganic & Medicinal Chemistry Letters, 18(24), 6534–6537.CrossRefGoogle Scholar
  15. 15.
    Mathur, D., & Agrawal, R. C. (2011). Evaluation of in vivo antimutagenic potential of fruits extracts of Withania coagulans. Der Pharma Chemica, 3, 373–376.Google Scholar
  16. 16.
    Ali, A., Maher, S., Khan, S. A., Chaudhary, M. I., & Musharraf, S. G. (2015). Sensitive quantification of six steroidal lactones in Withania coagulans extract by UHPLC electrospray tandem mass spectrometry. Steroids, 104, 176–181.CrossRefGoogle Scholar
  17. 17.
    Ihsan-ul-Haq, Youn, U. J., Chai, X., Park, E.-J., Kondratyuk, T. P., Simmons, C. J., Borris, R. P., Mirza, B., Pezzuto, J. M., & Chang, L. C. (2013). Biologically active withanolides from Withania coagulans. Journal of Natural Products, 76, 22–28.CrossRefGoogle Scholar
  18. 18.
    Hay, R. K. M., Waterman, P. G. (1993). Volatile oil crops: their biology, biochemistry, and production. In Longman Scientific & Technical (pp. 185). Harlow, Essex, England, New York, NY: J. Wiley.Google Scholar
  19. 19.
    Bandyopadhyay, M., Jha, S., & Tepfer, D. (2007). Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Reports, 26(5), 599–609.CrossRefGoogle Scholar
  20. 20.
    Awasthi, D., Ram, H. K., & Misra, R. (2007). Evaluation of withanolide-A and withaferin-A in Withania somnifera (L.) Dunal (Ashwagandha) roots from different climatic zones of Madhya Pradesh. Indian Journal of Tropical Biodiversity, 15, 152–154.Google Scholar
  21. 21.
    Kumar, A., Kaul, M. K., Bhan, M. K., Khanna, P. K., & Suri, K. A. (2007). Morphological and chemical variation in 25 collections of the Indian medicinal plant, Withania somnifera (L.) Dunal (Solanaceae). Genetic Resources and Crop Evolution, 54(3), 655–660.CrossRefGoogle Scholar
  22. 22.
    Praveen, N., Naik, P. M., Manohar, S. H., & Murthy, H. N. (2010). Distribution of withanolide a content in various organs of Withania somnifera (L.) Dunal. International Journal of Pharma and Bio Sciences, 1, 1–5.Google Scholar
  23. 23.
    Lan, Y.-H., Chang, F.-R., Pan, M.-J., Wu, C.-C., Wu, S.-J., Chen, S.-L., Wang, S.-S., Wu, M.-J., & Wu, Y.-C. (2009). New cytotoxic withanolides from Physalis peruviana. Food Chemistry, 116(2), 462–469.CrossRefGoogle Scholar
  24. 24.
    Huang, C.-F., Ma, L., Sun, L.-J., Ali, M., Arfan, M., Liu, J.-W., & Hu, L.-H. (2009). Immunosuppressive Withanolides from Withania coagulans. Chemistry & Biodiversity, 6(9), 1415–1426.CrossRefGoogle Scholar
  25. 25.
    Ramaiah, P. A., Lavie, D., Budhiraja, R. D., Sudhir, S., & Garg, K. N. (1984). Spectroscopic studies on a withanolide from Withania coagulans. Phytochemistry, 23, 143–149.CrossRefGoogle Scholar
  26. 26.
    SAS Institute. (2013). SAS version 9.4. Cary: SAS Institute.Google Scholar
  27. 27.
    Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7), 1085–1097.CrossRefGoogle Scholar
  28. 28.
    Levitt, J. (1980). Responses of plant to environmental stress: water, radiation, salt and other stresses. New York: Academic.Google Scholar
  29. 29.
    Jochum, G. M., Mudge, K. W., & Thomas, R. B. (2007). Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). American Journal of Botany, 94(5), 819–826.CrossRefGoogle Scholar
  30. 30.
    Pratt, J. D., Keefover-Ring, K., Liu, L. Y., & Mooney, K. A. (2014). Genetically based latitudinal variation in Artemisia californica secondary chemistry. Oikos, 123(8), 953–963.CrossRefGoogle Scholar
  31. 31.
    Kaul, M. K., Kumar, A., Ahuja, A., Mir, B. A., Suri, K. A., & Qazi, G. N. (2009). Production dynamics of withaferin A in Withania somnifera (L.) Dunal complex. Natural Product Research, 23(14), 1304–1311.CrossRefGoogle Scholar
  32. 32.
    Sangwan, R. S., Chaurasiya, N. D., Lal, P., Misra, L., Tuli, R., & Sangwan, N. S. (2008). Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). Physiologia Plantarum, 133(2), 278–287.CrossRefGoogle Scholar
  33. 33.
    Jahan, E., Perveen, S., Fatima, I., & Malik, A. (2010). Coagulansins A and B, new withanolides from Withania coagulans Dunal. Helvetica Chimica Acta, 93(3), 530–535.CrossRefGoogle Scholar
  34. 34.
    Khodaei, M., Jafari, M., & Noori, M. (2012). Remedial use of withanolides from Withania coagolans (Stocks) Dunal. Advances in Life Sciences, 2(1), 6–19.CrossRefGoogle Scholar
  35. 35.
    Ihsan-ul-Haq, Mirza, B., Kondratyuk, T. P., Park, E.-J., Burns, B. E., Marler, L. E., & Pezzuto, J. M. (2013). Preliminary evaluation for cancer chemopreventive and cytotoxic potential of naturally growing ethnobotanically selected plants of Pakistan. Pharmaceutical Biology, 51, 316–328.CrossRefGoogle Scholar
  36. 36.
    Senthil, V., Ramadevi, S., Venkatakrishnan, V., Giridharan, P., Lakshmi, B. S., Vishwakarma, R. A., & Balakrishnan, A. (2007). Withanolide induces apoptosis in HL-60 leukemia cells via mitochondria mediated cytochrome c release and caspase activation. Chemico-Biological Interactions, 167(1), 19–30.CrossRefGoogle Scholar
  37. 37.
    Jayaprakasam, B., Zhang, Y., Seeram, N. P., & Nair, M. G. (2003). Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sciences, 74(1), 125–132.CrossRefGoogle Scholar
  38. 38.
    Qureshi, S., Aziz, M. T., Qazi, M. H., & Saqib, T. (2015). Apoptotic activity of Withania coagulans methanolic extract in cancer cells using rats and HeLa cell line. Pakistan Journal of Medical and Health Sciences, 9, 123–127.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiochemistryQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Departments of Botany and GeographyUniversity of Wisconsin, MadisonMadisonUSA
  3. 3.Department of PharmacyQuaid-i-Azam UniversityIslamabadPakistan
  4. 4.Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
  5. 5.Department of BiochemistryKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.National University of Medical SciencesRawalpindiPakistan

Personalised recommendations