Advertisement

Applied Biochemistry and Biotechnology

, Volume 188, Issue 2, pp 498–513 | Cite as

Immunomodulatory Effects of Monascus spp.-Fermented Sacccharina japonica Extracts on the Cytokine Gene Expression of THP-1 Cells

  • Sharmin Suraiya
  • Won Je Jang
  • Hwa Jin Cho
  • Yu Bin Choi
  • Hae Dae Park
  • Jin-Man Kim
  • In-Soo KongEmail author
Article
  • 73 Downloads

Abstract

The immunomodulatory effects of Monascus-fermented Saccharina japonica extract on anti- and pro-inflammatory cytokines gene expression of THP-1 cells were evaluated. Extracts of fermented samples showed higher phenolic, flavonoid, protein, and reducing sugar contents than unfermented one. Fermented samples were rich in many bioactive compounds determined by GC-MS analyses and showed cell viability greater than 85% in MTS assay. Regarding the anti-inflammatory and pro-inflammatory activities of the different samples, Q-PCR analyses revealed that IL-10 gene expression in THP-1 cells was significantly higher (p < 0.05) in cells treated with the SjMp or SjMk sample than those treated with the unfermented sample. Cells treated with the SjMp extract or lipopolysaccharide (LPS) showed significantly (p < 0.05) higher relative gene expression of IL-4 cytokine than cells treated with SjMk or SjU extracts. The relative gene expression of IFN-α was higher in cells treated with SjMp followed by LPS, SjMk, and SjU. TGF-β expression was higher in LPS-stimulated cells followed by SjMk and other samples. Cells treated with SjMp exhibited significantly higher pro-inflammatory (IL-6, IL-8, TNF-α, and NF-κB) cytokine gene expression than cells treated with SjU. These results revealed that extracts from S. japonica fermented with Monascus spp. regulate cytokine gene expression.

Graphical abstract

Keywords

Fermentation Red mold Immunomodulation Q-PCR Relative gene expression Cytokine 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2930_MOESM1_ESM.docx (206 kb)
ESM 1 (DOCX 206 kb)

References

  1. 1.
    Chávez-Sánchez, L., Espinosa-Luna, J. E., Chávez-Rueda, K., Legorreta-Haquet, M. V., Montoya-Díaz, E., & Blanco-Favela, F. (2014). Innate immune system cells in atherosclerosis. Archives of Medical Research, 45(1), 1–14.Google Scholar
  2. 2.
    Lajili, S., Deghrigue, M., Bel Haj Amor, H., Muller, C. D., & Bouraoui, A. (2016). In vitro immunomodulatory activity and in vivo anti-inflammatory and analgesic potential with gastroprotective effect of the Mediterranean red alga Laurencia obtusa. Pharmaceutical Biology, 54(11), 2486–2495.Google Scholar
  3. 3.
    Agyei, D., & Danquah, M. K. (2012). Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science and Technology, 23(2), 62–69.Google Scholar
  4. 4.
    Robertson, R. C., Guihéneuf, F., Bahar, B., Schmid, M., Stengel, D. B., Fitzgerald, G. F., … & Stanton, C. (2015). The anti-inflammatory effect of algae-derived lipid extracts on lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Marine Drugs, 13(8), 5402–5424.Google Scholar
  5. 5.
    Bahar, B., O'Doherty, J. V., Smyth, T. J., & Sweeney, T. (2016). A comparison of the effects of an Ascophyllum nodosum ethanol extract and its molecular weight fractions on the inflammatory immune gene expression in-vitro and ex-vivo. Innovative Food Science & Emerging Technologies, 37, 276–285.Google Scholar
  6. 6.
    Zha, X. Q., Xiao, J. J., Zhang, H. N., Wang, J. H., Pan, L. H., Yang, X. F., & Luo, J. P. (2012). Polysaccharides in Laminaria japonica (LP): Extraction, physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atherosclerosis. Food Chemistry, 134(1), 244–252.Google Scholar
  7. 7.
    Hong, H., Park, J., Lumbera, W. L., & Hwang, S. G. (2017). Monascus ruber-fermented buckwheat (red yeast buckwheat) suppresses adipogenesis in 3T3-L1 cells. Journal of Medicinal Food, 20(4), 352–359.Google Scholar
  8. 8.
    Islam, M. N., Ishita, I. J., Jin, S. E., Choi, R. J., Lee, C. M., Kim, Y. S., Jung, H. A., & Choi, J. S. (2013). Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells. Food and Chemical Toxicology, 55, 541–548.Google Scholar
  9. 9.
    Fang, Q., Wang, J. F., Zha, X. Q., Cui, S. H., Cao, L., & Luo, J. P. (2015). Immunomodulatory activity on macrophage of a purified polysaccharide extracted from Laminaria japonica. Carbohydrate Polymers, 134, 66–73.Google Scholar
  10. 10.
    Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29(3), 365–373.Google Scholar
  11. 11.
    Huang, Q., Zhang, H., & Xue, D. (2017). Enhancement of antioxidant activity of radix Puerariae and red yeast rice by mixed fermentation with Monascus purpureus. Food Chemistry, 226, 89–94.Google Scholar
  12. 12.
    Uchida, M., Kurushima, H., Ishihara, K., Murata, Y., Touhata, K., Ishida, N., Niwa, K., & Araki, T. (2017). Characterization of fermented seaweed sauce prepared from nori (Pyropia yezoensis). Journal of Bioscience and Bioengineering, 123(3), 327–332.Google Scholar
  13. 13.
    Suraiya, S., Siddique, M. P., Lee, J. M., Kim, E. Y., Kim, J. M., & Kong, I. S. (2018). Enhancement and characterization of natural pigments produced by Monascus spp. using Saccharina japonica as fermentation substrate. Journal of Applied Phycology, 30(1), 729–742.Google Scholar
  14. 14.
    Suraiya, S., Kim, J. H., Tak, J. Y., Siddique, M. P., Young, C. J., Kim, J. K., & Kong, I. S. (2018). Influences of fermentation parameters on lovastatin production by Monascus purpureus using Saccharina japonica as solid fermented substrate. LWT- Food Science and Technology, 92, 1–9.Google Scholar
  15. 15.
    Hsu, L. C., Hsu, Y. W., Liang, Y. H., Kuo, Y. H., & Pan, T. M. (2011). Anti-tumor and anti-inflammatory properties of ankaflavin and monaphilone a from Monascus purpureus NTU 568. Journal of Agricultural and Food Chemistry, 59(4), 1124–1130.Google Scholar
  16. 16.
    Hsu, L. C., Liang, Y. H., Hsu, Y. W., Kuo, Y. H., & Pan, T. M. (2013). Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568. Journal of Agricultural and Food Chemistry, 61(11), 2796–2802.Google Scholar
  17. 17.
    Cho, S. Y., Park, S. J., Kwon, M. J., Jeong, T. S., Bok, S. H., Choi, W. Y., Jeong, W. I., Ryu, S. Y., Do, S. H., Lee, C. S., & Song, J. C. (2003). Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-κB pathway in lipopolysaccharide-stimulated macrophage. Molecular and Cellular Biochemistry, 243(1–2), 153–160.Google Scholar
  18. 18.
    Radu, N., Doncea, S. M., Ferdes, M., Salageanu, A., & Rau, I. (2012). Biostimulatory properties of Monascus sp. bioproducts. Molecular Crystals and Liquid Crystals, 555(1), 195–201.Google Scholar
  19. 19.
    Chanput, W., Mes, J. J., & Wichers, H. J. (2014). THP-1 cell line: an in vitro cell model for immune modulation approach. International Immunopharmacology, 23(1), 37–45.Google Scholar
  20. 20.
    Schildberger, A., Rossmanith, E., Eichhorn, T., Strassl, K., & Weber, V. (2013). Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide. Mediators of Inflammation, 2013, 1–10.Google Scholar
  21. 21.
    Tseng, K. C., Fang, T. J., Chiang, S. S., Liu, C. F., Wu, C. L., & Pan, T. M. (2012). Immunomodulatory activities and antioxidant properties of polysaccharides from Monascus-fermented products in vitro. Journal of the Science of Food and Agriculture, 92(7), 1483–1489.Google Scholar
  22. 22.
    Lull, C., Wichers, H. J., & Savelkoul, H. F. (2005). Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators of Inflammation, 2005(2), 63–80.Google Scholar
  23. 23.
    Shin, H. M. (2009). Mixture of wild Panax ginseng and red-mold rice extracts activates macrophages through protection of cell regression and cytokine expression in methotrexate-treated RAW264. 7 cells. Korean Journal of Oriental Medicine, 30(6), 69–79.Google Scholar
  24. 24.
    Suraiya, S., Lee, J. M., Cho, H. J., Jang, W. J., Kim, D. G., Kim, Y. O., & Kong, I. S. (2018). Monascus spp. fermented brown seaweeds extracts enhance bio-functional activities. Food Bioscience, 21, 90–99.Google Scholar
  25. 25.
    Chew, K. K., Khoo, M. Z., Ng, S. Y., Thoo, Y. Y., Wan Aida, W. M., & Ho, C. W. (2011). Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. International Food Research Journal, 18, 571–578.Google Scholar
  26. 26.
    Babitha, S., Soccol, C. R., & Pandey, A. (2007). Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology, 98(8), 1554–1560.Google Scholar
  27. 27.
    Zheng, Y., Xin, Y., & Guo, Y. (2009). Study on the fingerprint profile of Monascus products with HPLC–FD, PAD and MS. Food Chemistry, 113(2), 705–711.Google Scholar
  28. 28.
    Lee, C. L., Wang, J. J., Kuo, S. L., & Pan, T. M. (2006). Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent—monacolin K and antiinflammation agent—monascin. Applied Microbiology and Biotechnology, 72(6), 1254–1262.Google Scholar
  29. 29.
    Mostafa, M. E., & Abbady, M. S. (2014). Secondary metabolites and bioactivity of the Monascus pigments review article. Global Journal of Biotechnology and Biochemistry, 9, 1–13.Google Scholar
  30. 30.
    Huynh, N. T., Van Camp, J., Smagghe, G., & Raes, K. (2014). Improved release and metabolism of flavonoids by steered fermentation processes: A review. International Journal of Molecular Sciences, 15(11), 19369–19388.Google Scholar
  31. 31.
    Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302.Google Scholar
  32. 32.
    Bayitse, R., Hou, X., Laryea, G., & Bjerre, A. B. (2015). Protein enrichment of cassava residue using Trichoderma pseudokoningii (ATCC 26801). AMB Express, 5(1), 80.Google Scholar
  33. 33.
    Hou, X., Hansen, J. H., & Bjerre, A. B. (2015). Integrated bioethanol and protein production from brown seaweed Laminaria digitata. Bioresource Technology, 197, 310–317.Google Scholar
  34. 34.
    Alves, L. A., Almeida e Silva, J. B., & Giulietti, M. (2007). Solubility of D-glucose in water and ethanol/water mixtures. Journal of Chemical & Engineering Data, 52(6), 2166–2170.Google Scholar
  35. 35.
    Trivedi, N., Reddy, C. R. K., Radulovich, R., & Jha, B. (2015). Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Research, 9, 48–54.Google Scholar
  36. 36.
    Gupta, R., Mehta, G., Khasa, Y. P., & Kuhad, R. C. (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4), 797–804.Google Scholar
  37. 37.
    Khan, M. N. A., Cho, J. Y., Lee, M. C., Kang, J. Y., Park, N. G., Fujii, H., & Hong, Y. K. (2007). Isolation of two anti-inflammatory and one pro-inflammatory polyunsaturated fatty acids from the brown seaweed Undaria pinnatifida. Journal of Agricultural and Food Chemistry, 55(17), 6984–6988.Google Scholar
  38. 38.
    Balamurugan, M., Selvam, G. G., Thinakaran, T., & Sivakumar, K. (2013). Biochemical study and GC-MS analysis of Hypnea musciformis (Wulf.) Lamouroux. American-Eurasian Journal of Scientific Research, 8(3), 117–123.Google Scholar
  39. 39.
    Kang, J. Y., Khan, M. N. A., Park, N. H., Cho, J. Y., Lee, M. C., Fujii, H., & Hong, Y. K. (2008). Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. Journal of Ethnopharmacology, 116(1), 187–190.Google Scholar
  40. 40.
    Mohamed, E. M. (2005). Physiological studies on the Monascus ruber red pigment and GC/MS analysis. International Research Journal of Biological Sciences, 4(10), 1–9.Google Scholar
  41. 41.
    Ostlund, R. E., Racette, S. B., & Stenson, W. F. (2003). Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ. The American Journal of Clinical Nutrition, 77(6), 1385–1389.Google Scholar
  42. 42.
    Bradford, P. G., & Awad, A. B. (2007). Phytosterols as anticancer compounds. Molecular Nutrition & Food Research, 51(2), 161–170.Google Scholar
  43. 43.
    Walters, K. R., Pan, Q., Serianni, A. S., & Duman, J. G. (2009). Cryoprotectant biosynthesis and the selective accumulation of threitol in the freeze-tolerant Alaskan beetle, Upis ceramboides. Journal of Biological Chemistry, 284(25), 16822–16831.Google Scholar
  44. 44.
    Raman, B. V., La, S., Saradhi, M. P., Rao, B. N., Khrisna, A. N. V., Sudhakar, M., & Radhakrishnan, T. (2012). Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian Journal of Pharmaceutical and Clinical Research, 5(2), 99–106.Google Scholar
  45. 45.
    Grabarczyk, M., Wińska, K., Mączka, W., Potaniec, B., & Anioł, M. (2015). Loliolide–the most ubiquitous lactone. Folia Biologica et Oecologica, 11(1), 1–8.Google Scholar
  46. 46.
    Nguyen, T. T., Kim, J., Jeon, S. J., Lee, C. W., Magan, N., & Lee, H. B. (2018). Mycotoxin production of Alternaria strains isolated from Korean barley grains determined by LC-MS/MS. International Journal of Food Microbiology, 268, 44–52.Google Scholar
  47. 47.
    Júnior, S. Q., Carneiro, V. H. A., Fontenelle, T. P. C., de Sousa Chaves, L., Mesquita, J. X., de Brito, T. V., … & de Albuquerque Ribeiro, R. (2015). Antioxidant and anti-inflammatory activities of methanol extract and its fractions from the brown seaweed Spatoglossum schroederi. Journal of Applied Phycology, 27(6), 2367–2376.Google Scholar
  48. 48.
    Sutter, S., Thevenieau, F., Bourdillon, A., & De Coninck, J. (2017). Immunomodulatory properties of filamentous fungi cultivated through solid-state fermentation on rapeseed meal. Applied Biochemistry and Biotechnology, 182(3), 910–924.Google Scholar
  49. 49.
    Nozaki, H., Itonori, S., Sugita, M., Nakamura, K., Ohba, K., Suzuki, A., & Kushi, Y. (2008). Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1. 1 α/β TCR-double positive cells in vitro. Biochemical and Biophysical Research Communications, 373(3), 435–439.Google Scholar
  50. 50.
    Nascimento, M. S., Magalhães, J. E., Pinheiro, T. S., Silva, T. A. D., Coutinho, L. G., Baseia, I. G., Lima, L. F. A., & Leite, E. L. (2012). Polysaccharides from the fungus Scleroderma nitidum with anti-inflammatory potential modulate cytokine levels and the expression of nuclear factor kB. Revista Brasileira de Farmacognosia, 22(1), 60–68.Google Scholar
  51. 51.
    Yokoyama, W. M., Kim, S., & French, A. R. (2004). The dynamic life of natural killer cells. Annual Review of Immunology, 22(1), 405–429.Google Scholar
  52. 52.
    Stanley, G., Harvey, K., Slivova, V., Jiang, J., & Sliva, D. (2005). Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-β1 from prostate cancer cells. Biochemical and Biophysical Research Communications, 330(1), 46–52.Google Scholar
  53. 53.
    Borchers, A. T., Krishnamurthy, A., Keen, C. L., Meyers, F. J., & Gershwin, M. E. (2008). The immunobiology of mushrooms. Experimental Biology and Medicine, 233(3), 259–276.Google Scholar
  54. 54.
    Moradali, M. F., Mostafavi, H., Ghods, S., & Hedjaroude, G. A. (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology, 7(6), 701–724.Google Scholar
  55. 55.
    Petrova, R. D., Reznick, A. Z., Wasser, S. P., Denchev, C. M., Nevo, E., & Mahajna, J. (2008). Fungal metabolites modulating NF-κB activity: An approach to cancer therapy and chemoprevention. Oncology Reports, 19(2), 299–308.Google Scholar
  56. 56.
    Hoesel, B., & Schmid, J. A. (2013). The complexity of NF-κB signaling in inflammation and cancer. Molecular Cancer, 12(1), 86.Google Scholar
  57. 57.
    Kim, T. H., & Bae, J. S. (2010). Ecklonia cava extracts inhibit lipopolysaccharide induced inflammatory responses in human endothelial cells. Food and Chemical Toxicology, 48(6), 1682–1687.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sharmin Suraiya
    • 1
    • 2
  • Won Je Jang
    • 1
  • Hwa Jin Cho
    • 1
  • Yu Bin Choi
    • 1
  • Hae Dae Park
    • 1
  • Jin-Man Kim
    • 3
  • In-Soo Kong
    • 1
    Email author
  1. 1.Department of Biotechnology, College of Fisheries SciencePukyong National UniversityBusanRepublic of Korea
  2. 2.Department of Fisheries and Marine BioscienceBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
  3. 3.Department of BiotechnologyChonnam National UniversityYeosuRepublic of Korea

Personalised recommendations