Applied Biochemistry and Biotechnology

, Volume 182, Issue 4, pp 1619–1629 | Cite as

Nanosilicalites as Support for β-Glucosidases Covalent Immobilization

  • Y. Carvalho
  • J. M. A. R. Almeida
  • P. N. Romano
  • K. Farrance
  • P. Demma Carà
  • N. PereiraJrEmail author
  • J. A. Lopez-Sanchez
  • E. F. Sousa-Aguiar


Many different materials have been tested for β-glucosidases immobilization. Such materials, however, often show a poor activity related to a low surface area of the support or even enzyme hindrance caused by entrapment inside porous matrix. In this context, the use of nanosized zeolites as enzymes support is quite new and may be an interesting alternative. The present work evaluates the immobilization of β-glucosidases in nanosized silicalites by covalent coupling. The new biocatalyst was able to convert 100% of cellobiose into glucose in 18 h at 50 °C and pH 5, retaining 85% of its activity after five cycles of reuse. A detailed investigation of the published literature indicates that, apparently, this is the first work concerning the immobilization of β-glucosidases on nanosized zeolites ever reported.


Enzymes Immobilization Zeolites Cellobiose Silicalite β-glucosidase 



The authors are grateful to Thomas Davies for the TEM analysis at the Research Complex at Harwell through the UK catalysis hub funded by EPSRC (portfolio grants EP/K014706/1, EP/K014668/1, EP/K014854/1, and EP/K014714/1). The authors gratefully acknowledge the financial support of CNPq, CAPES-Brazil, EPSRC (grant EP/K014773/1), the Department for Business Skills and Innovation (Regional Growth Fund, MicroBioRefinery project) and the Centre for Materials Discovery.


  1. 1.
    Arantes, V., & Saddler, J. N. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnology for Biofuels, 3, 1.CrossRefGoogle Scholar
  2. 2.
    Borges, D. G., Baraldo Jr., A., Farinas, C. S., Giordano Rde, L., & Tardioli, P. W. (2014). Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized beta-glucosidase. Bioresource Technology, 167, 206–213.CrossRefGoogle Scholar
  3. 3.
    Davis, T. M., Drews, T. O., Ramanan, H., He, C., Dong, J., Schnablegger, H., Katsoulakis, M. A., Kokkoli, E., McCormick, A. V., Penn, R. L., & Tsapatsis, M. (2006). Mechanistic principles of nanoparticle evolution to zeolite crystals. Nature Materials, 5, 400–408.CrossRefGoogle Scholar
  4. 4.
    Figueira Jde, A., Dias, F. F., Sato, H. H., & Fernandes, P. (2011). Screening of supports for the immobilization of beta-glucosidase. Enzyme Research, 2011, 642460.Google Scholar
  5. 5.
    Galarneau, A., Mureseanu, M., Atger, S., Renard, G., & Fajula, F. (2006). Immobilization of lipase on silicas. Relevance of textural and interfacial properties on activity and selectivity. New Journal of Chemistry, 30, 562–571.CrossRefGoogle Scholar
  6. 6.
    Gokhale, A. A., & Lee, I. (2012). Cellulase immobilized nanostructured supports for efficient saccharification of cellulosic substrates. Topics in Catalysis, 55, 1231–1246.CrossRefGoogle Scholar
  7. 7.
    Guan, L., Di, B., Su, M., & Qian, J. (2013). Immobilization of beta-glucosidase on bifunctional periodic mesoporous organosilicas. Biotechnology Letters, 35, 1323–1330.CrossRefGoogle Scholar
  8. 8.
    Guo, F., Fang, Z., Xu, C. C., & Smith, R. L. (2012). Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science, 38, 672–690.CrossRefGoogle Scholar
  9. 9.
    Hill, H. D., & Straka, J. G. (1988). Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Analytical Biochemistry, 170, 203–208.CrossRefGoogle Scholar
  10. 10.
    Kaur, J., Chadha, B. S., Kumar, B. A., Ghatora, S. K., & Saini, H. S. (2007). Purification and characterization of ß-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology, 10, 0–0.CrossRefGoogle Scholar
  11. 11.
    Lee, C.-H., Lin, T.-S., & Mou, C.-Y. (2009). Mesoporous materials for encapsulating enzymes. Nano Today, 4, 165–179.CrossRefGoogle Scholar
  12. 12.
    Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.CrossRefGoogle Scholar
  13. 13.
    Maeda, R. N., Barcelos, C. A., Santa Anna, L. M., & Pereira Jr., N. (2013). Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Journal of Biotechnology, 163, 38–44.CrossRefGoogle Scholar
  14. 14.
    Maeda, R. N., Serpa, V. I., Rocha, V. A. L., Mesquita, R. A. A., Anna, L. M. M. S., de Castro, A. M., Driemeier, C. E., Pereira, N., & Polikarpov, I. (2011). Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochemistry, 46, 1196–1201.CrossRefGoogle Scholar
  15. 15.
    Mureseanu, M., Galarneau, A., Renard, G., & Fajula, F. (2005). A new mesoporous micelle-templated silica route for enzyme encapsulation. Langmuir, 21, 4648–4655.CrossRefGoogle Scholar
  16. 16.
    Pal, A., & Khanum, F. (2011). Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Process Biochemistry, 46, 1315–1322.CrossRefGoogle Scholar
  17. 17.
    Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 42, 6223–6235.CrossRefGoogle Scholar
  18. 18.
    Singh, R. K., Zhang, Y. W., Nguyen, N. P., Jeya, M., & Lee, J. K. (2011). Covalent immobilization of beta-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Applied Microbiology and Biotechnology, 89, 337–344.CrossRefGoogle Scholar
  19. 19.
    Tan, I. S., & Lee, K. T. (2015). Immobilization of beta-glucosidase from Aspergillus niger on kappa-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. Bioresource Technology, 184, 386–394.CrossRefGoogle Scholar
  20. 20.
    Tsai, C. T., & Meyer, A. S. (2014). Enzymatic cellulose hydrolysis: enzyme reusability and visualization of beta-glucosidase immobilized in calcium alginate. Molecules, 19, 19390–19406.CrossRefGoogle Scholar
  21. 21.
    Tu, M., Zhang, X., Kurabi, A., Gilkes, N., Mabee, W., & Saddler, J. (2006). Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnology Lett, 28, 151–156.CrossRefGoogle Scholar
  22. 22.
    Verardi, A., Blasi, A., Molino, A., Albo, L., & Calabrò, V. (2016). Improving the enzymatic hydrolysis of Saccharum officinarum L. bagasse by optimizing mixing in a stirred tank reactor: quantitative analysis of biomass conversion. Fuel Processing Technology, 149, 15–22.CrossRefGoogle Scholar
  23. 23.
    Verma, M. L., Chaudhary, R., Tsuzuki, T., Barrow, C. J., & Puri, M. (2013). Immobilization of beta-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresource Technology, 135, 2–6.CrossRefGoogle Scholar
  24. 24.
    Wang, P., Hu, X., Cook, S., & Hwang, H. M. (2009). Influence of silica-derived nano-supporters on cellobiase after immobilization. Applied Biochemistry and Biotechnology, 158, 88–96.CrossRefGoogle Scholar
  25. 25.
    Zucca, P., & Sanjust, E. (2014). Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules, 19, 14139–14194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Y. Carvalho
    • 1
  • J. M. A. R. Almeida
    • 1
  • P. N. Romano
    • 1
  • K. Farrance
    • 2
  • P. Demma Carà
    • 2
  • N. PereiraJr
    • 1
    Email author
  • J. A. Lopez-Sanchez
    • 2
  • E. F. Sousa-Aguiar
    • 1
  1. 1.Postgraduate Program in Technology of Chemical and Biochemical Processes, School of ChemistryFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.MicroBioRefinery Facility, Stephenson’s Institute for Renewable Energy, Department of ChemistryUniversity of LiverpoolLiverpoolUK

Personalised recommendations