Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bionic innovation design of disc brake

  • 28 Accesses


Creative thinking is the key factor of the product innovation design, and Bionic interaction design is a completely new method to achieve the creative design. In order to increase the abrasion resistance and reduce the natural frequency of automobile disc brake, and then weaken the brake squeal, the brake is designed from bionic points. Firstly, the brake is modeled at four levels of the function, principle, behavior and structure to fully express the internal relationship of the product; similarly, the corresponding biological system is modeled with function, strategy, action and structure based on the HIM. Meanwhile, considering the synergistic effect of multiple organisms, a multi-level Cooperative Mapping Mechanism based on multi-biological principle is raised to design the brake scheme. Secondly, thermodynamic and modal analysis of the bionic brake scheme is done. Finally, the bionic structure is parameterized designed based on numerical simulation to verify the feasibility and effectiveness of the proposed method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


  1. 1.

    Ren, L.Q., Liang, Y.H.: Preliminary studies on the basic factors of bionics. J. Sci. China Technol. Sci. 57(3), 520–530 (2014)

  2. 2.

    Katherine, F., Dinana, M., Maria, Y., et al.: Bio-inspired design: an overview investigating open questions from the broader field of design-by-analogy. J. Mech. Des. 136(11), 1–18 (2014)

  3. 3.

    Stefan, W., Bo, T.C., Linden, J.B.: Collaborative problem solution co-evolution in creative design. J. Des. Stud. 34(5), 515–542 (2013)

  4. 4.

    Drack, M., Limpinsel, M., Bruyn, G.D., et al.: Towards a theoretical clarification of biomimetics using conceptual tools from engineering design. J. Bioinspir. Biomim. 13(1), 1–12 (2017)

  5. 5.

    Wang-Chih, C., Jahau, L.C.: Eco-innovation by integrating biomimetic design and ARIZ. J. Proc. CIRP 15, 401–406 (2014)

  6. 6.

    Sartori, J., Pal, U., Chakrabarti, A.: A methodology for supporting “transfer” in biomimetic design. J. Artif. Intell. Eng. Des. Anal. Manuf. 24(10), 483–505 (2012)

  7. 7.

    Vattam, S., Wiltgen, B., Helms, M.: DANE: Fostering Creativity in and Through Biologically Inspired Design. Springer, London (2010)

  8. 8.

    Chiu, I., Shu, L.H.: Biomimetic design through natural language analysis to facilitate cross-domain information retrieval. J. Artif. Intell. Eng. Des. Anal. Manuf. 21(1), 45–59 (2007)

  9. 9.

    Hyumin, C., Shu, L.H.: Using templates and mapping strategies to support analogical transfer in biomimetic design. J. Des. Stud. 34(6), 706–728 (2013)

  10. 10.

    Gu, C.C., Hu, J., Peng, Y.H.: Research on function based method for bio-inspiration knowledge modeling and transformation. J. Shanghai Jiaotong Univ. 19(2), 190–198 (2014)

  11. 11.

    Hyumin, C., Shu, L.H.: Retrieving causally related functions from natural-language text for biomimetic design. J. Mech. Des. 136(8), 52–68 (2014)

  12. 12.

    Jacquelyn, K.S.N.: A Thesaurus for Bioinspired Engineering Design. Springer, London (2014)

  13. 13.

    Alessandro, B., Gaetano, C.: About integration opportunities between TRIZ and biomimetics for inventive design. J. Proc. Eng. 131, 3–13 (2015)

  14. 14.

    Hou, X.T., Liu, W., Cao, G.Z., et al.: Research on design method of function combination product based on multi biological effects. J. Chin. J. Eng. Des. 24(1), 18–24 (2017)

  15. 15.

    Liu, W., Cao, G.Z., et al.: Research on rapid response design based on multiple bionic. J. Chin. J. Eng. Des. 22(1), 1–10 (2015)

  16. 16.

    Liu, W., Cao, G.Z., et al.: Systematic modeling method on biological information faced to engineering application. Chin. J. Eng. Des. 22(2), 106–114 (2015)

  17. 17.

    Liu, W., Cao, G.Z., Tan, R.H., et al.: Research on measures to technical realization of muti biological effects. J. Mech. Eng. 52(9), 129–140 (2016)

  18. 18.

    Ji, X., Gu, X.J., Dai, F., et al.: BioTRIZ-based product innovative design process. J. Zhejiang Univ. (Eng. Sci.) 48(1), 35–41 (2014)

  19. 19.

    Ren, L.Q., Liang, Y.H.: Generation mechanism of biological coupling. J. Jilin Univ. (Eng. Technol. Ed.) 41(5), 1348–1357 (2011)

  20. 20.

    Ren, L.Q., Liang, Y.H.: Biological coupling element and its coupling method. J. Jilin Univ. (Eng. Technol. Ed.) 39(6), 1504–1511 (2009)

  21. 21.

    Jia, Y., Liu, X.M., Chen, Y.T.: Research of integrated model and its application for product innovation based on TRIZ and bionics. J. Chin. J. Eng. Des. 6, 522–528 (2014)

  22. 22.

    Jia, L.Z., Liu, W., Tan, R.H., et al.: Research on product conceptual design based on biological-technological characteristic analogy. J. Chin. J. Eng. Des. 22(4), 301–308 (2015)

  23. 23.

    Vandevenne, D., Verhaegen, P.A., et al.: Product and organism aspects for scalable systematic biologically-inspired design. J. Proc. Eng. 131, 784–791 (2015)

  24. 24.

    Liu, X.M., Huang, S.P., Chen, Y.T.: Research and application: conceptual integrated model based on TRIZ and bionics for product innovation. Int. J. Interact. Des. Manuf. 11, 341 (2017)

  25. 25.

    Chen, W.C., Chen, J.L.: Innovative method by design-around concepts with integrating the algorithm for inventive problem solving. J. Mech. Sci. Technol. 28(1), 201–211 (2014)

  26. 26.

    Lalita, H., Celine, M., Miki, S.: How professional designers use magic-based inspirations: development of a usage guideline and analysis of impact on design process. Int. J. Interact. Des. Manuf. 13, 659–671 (2019)

  27. 27.

    Hu, Y.Z., EL-Sayed, S.A., Constantin, C.: Creativity-based design innovation environment in support of robust product development. Int. J. Interact. Des. Manuf. 10(4), 335–353 (2016)

  28. 28.

    Cordella, F., Zollo, L., Guglielmelli, E., et al.: A bio-inspired grasp optimization algorithm for an anthropomorphic robotic hand. Int. J. Interact. Des. Manuf. 6, 113 (2012)

  29. 29.

    Gao, Y.Y.: Bionic Construction of Brake Disc’s Surface Structure and Simulation Analysis of Its Performance. D. Hebei: Hebei University of Science and Technology, pp. 10–14 (2015)

  30. 30.

    Teng, X.Y., Jiang, X.D., Shi, D.Y.: A bionic approach of topology optimization to low noise for thin plates. J. China Mech. Eng. 27(10), 1358–1364 (2016)

  31. 31.

    Huang, J.Y., Siao, S.T.: Development of an integrated bionic design system. J. Eng. Des. Technol. 14(2), 310–327 (2016)

  32. 32.

    Shoshanah, R.J., Emily, C.N., Helms, M.E.: “Where are we now and where are we going?” The BioM innovation database. J. Mech. Des. 136(11), 1–10 (2014)

  33. 33.

    Kamps, T., Gralow, M., Schlick, G., Reinhart, G.: Systematic biomimetic part design for additive manufacturing. J. Proc. CIRP 65, 259–266 (2017)

  34. 34.

    Rui, T., Hui, C.: The analysis of structural optimization and brake noise of disc brake. J. Modern Manuf. Eng. 8, 52–56 (2015)

  35. 35.

    Zhang, L.J., Diao, K., et al.: Bench test and statistical analysis of uncertainty of disc brake squeal. J. Tongji Univ. (Nat. Sci.) 42(5), 773–781 (2014)

  36. 36.

    Belhocine, A., Wan, O.W.Z.: Computational fluid dynamics (CFD) analysis and numerical aerodynamic investigations of automotive disc brake rotor. Int. J. Interact. Des. Manuf. 12, 421 (2018)

  37. 37.

    Karamoozian, A., Tan, C.A., Wang, L.: Squeal analysis of thin-walled lattice brake disc structure. J. Mater. Des. 149, 1–14 (2018)

  38. 38.

    Daanvir, K.D.: Thermo-mechanical performance of automotive disc brakes. J. Mater. Today Proc. 5(1), 1864–1871 (2018)

  39. 39.

    Cheol, K., Kwon, Y., Dongwon, K.: Analysis of low-frequency squeal in automotive disc brake by optimizing groove and caliper shapes. Int. J. Precis. Eng. Manuf. 19(4), 505–512 (2018)

  40. 40.

    Khaled, R.M.M., Mourad, M., Mahfouz, A.B.: Dynamic behaviors of a wedge disc brake. J. Appl. Acoust. 128, 32–39 (2017)

  41. 41.

    Dominic, J., Prter, H.: Optimization of damping for squeal avoidance in disc brakes. J. PAMM 17(1), 373–374 (2017)

  42. 42.

    Yang, X., Zhang, Z.H., Wang, J.T., et al.: Computer simulation of surface temperature field and stress field of bionic brake disc. J. Mech. Eng. 48(17), 121–127 (2012)

  43. 43.

    Xu, Q.H., Ren, Z.P., Qi, X.B.: Practical Guide to TRIZ Innovation Theory. Beijing Institute of Technology Press, Beijing (2011)

  44. 44.

    Ren, L.Q.: Progress in the bionic study on anti-adhesion and resistance reduction of terrain machines. J. Sci. China Ser. E Technol. Sci. 52(2), 273–284 (2009)

  45. 45.

    Ren, L.Q., Liang, Y.H.: Biological couplings: classification and characteristic rules. J. Sci. China Ser. E Technol. Sci. 52(10), 2791–2800 (2009)

  46. 46.

    The Biomimicry Institute: Ask Nature http://www.asknature.org. Accessed 5 Aug 2018

Download references


The authors are grateful to the supports provided by the National Natural Science Foundation of China (No. 50875049) and the Natural Science Foundation of Fujian Province, China (No. 2014J01184). We are also grateful to the reviewers for their invaluable comments, which have helped us greatly in revising this paper.

Author information

Correspondence to Liang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Fan, D., Dou, H. et al. Bionic innovation design of disc brake. Int J Interact Des Manuf 14, 309–322 (2020). https://doi.org/10.1007/s12008-020-00657-w

Download citation


  • Bionic interaction design
  • Multi-biological principles
  • Collaborative mapping
  • Brakes