Advertisement

A comparative analysis of adhesive bonding and interference fitting as joining technologies for hybrid metal-composite gear manufacturing

  • 4 Accesses

Abstract

The aim of this work is to compare two different joining technologies for steel and carbon fibre reinforced polymer materials in a hybrid gear in order to improve the dynamic behaviour in terms of natural frequencies and damping properties. A comprehensive approach for the design and prototyping of hybrid metal-composite gears with interference fitting and adhesive bonding is provided. In a following phase, an accurate description of the experimental impact tests is shown in order to investigate modal performances. Successively, in a finite element environment, modal analyses are conducted and frequency response functions of the gear model are analysed by means of complex stiffness matrix that accounts for structural damping. Impact tests and simulations indicate that the solution with interference fitting is stiffer than the one with adhesive, even if the damping capacity is lower. The results for both technologies show that it is possible to enhance noise and vibrations behaviour of gears through the application of composite materials in place of conventional full-metal solutions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Kim, B.J., Kim, H.S., Lee, D.G.: Design of hybrid steel/composite circular plate cutting tool structures. Compos. Struct. 75, 250–260 (2006). https://doi.org/10.1016/j.compstruct.2006.04.028

  2. 2.

    Cho, S.-K., Kim, H.-J., Chang, S.-H.: The application of polymer composites to the table-top machine tool components for higher stiffness and reduced weight. Compos. Struct. 93, 492–501 (2011). https://doi.org/10.1016/j.compstruct.2010.08.030

  3. 3.

    Cho, D.H., Lee, D.G., Choi, J.H.: Manufacture of one-piece automotive drive shafts with aluminium and composite materials. Compos. Struct. 38, 309–319 (1997). https://doi.org/10.1016/S0263-8223(97)00065-2

  4. 4.

    Bae, J.-H., Jung, K.-C., Yoo, S.-H., Chang, S.-H., Kim, M., Lim, T.: Design and fabrication of a metal-composite hybrid wheel with a friction damping layer for enhancement of ride comfort. Compos. Struct. 133, 576–584 (2015). https://doi.org/10.1016/j.compstruct.2015.07.113

  5. 5.

    R.F. Handschuh, G.D. Roberts, R.R. Sinnamon, D.B. Stringer, B.D. Dykas, L.W. Kohlman, Hybrid gear preliminary results—application of composites to dynamic mechanical components, NASA/TM—2012-217630 (2012)

  6. 6.

    LaBerge K.E., Handschuh R.F., Roberts G.D., Thorp S.: Performance investigation of a full-scale hybrid composite bull gear, AHS 2016 Forum; 72nd, 17–19 May 2016, West Palm Beach, FL, United States

  7. 7.

    LaBerge, K.E. Johnston, J.P., Handschuh, R.F., Roberts, G.D.: Evaluation of a variable thickness hybrid composite bull gear, AHS 2017 Forum; 73rd, 14–17 May 2018, Phoenix, Arizona, United States

  8. 8.

    Martinsen, K., Hu, S.J., Carlson, B.E.: Joining of dissimilar materials. CIRP Ann Manuf Technol 64, 679–699 (2015). https://doi.org/10.1016/j.cirp.2015.05.006

  9. 9.

    Kieβling, R., Ihlemann, J., Pohl, M., Stommel, M., Dammann, C., Mahnken, R., Bobbert, M., Meschut, G., Hirsch, F., Kastner, M.: On the design, characterization and simulation of metal-composite interfaces. Appl. Compos. Mater. 24, 251–269 (2017). https://doi.org/10.1007/s10443-016-9526-z

  10. 10.

    Wang, X., Ahn, J., Lee, J., Blackman, B.R.K.: Investigation on failure modes and mechanical properties of CFRP-Ti6Al4V hybrid joints with different interface patterns using digital image correlation. Mater. Des. 101, 188–196 (2016). https://doi.org/10.1016/j.matdes.2016.04.005

  11. 11.

    Liu, Q., Ma, J., Kang, L., Sun, G., Li, Q.: An experimental study on fatigue characteristics of CFRP-steel hybrid laminates. Mater. Des. 88, 643–650 (2015). https://doi.org/10.1016/j.matdes.2015.09.024

  12. 12.

    Streitferdt, A., Rudolph, N.: Co-Curing of CFRP-Steel Hybrid Joints Using the Vacuum Assisted Resin Infusion Process. Appl. Compos. Mater. 24, 1137–1149 (2017). https://doi.org/10.1007/s10443-016-9575-3

  13. 13.

    LaBerge, K.E., Berkebile, S.P., Handschuh, R.F., Roberts, G.D.: Hybrid gear performance under loss-of-lubrication conditions. In: 73rd American Helicopter Society Annual Forum; 9–11 May 2017, United States

  14. 14.

    Fritz, P.J., Williams, K.A., Mapkar, J.A.: Metal-to-composite structural joining for drivetrain applications. In: Joining Technologies for Composites and Dissimilar Materials, Volume 10, Proceedings of the 2016 Annual Conference on experimental and applied mechanics, Springer, Chapter 12, pp. 107–114

  15. 15.

    Treviso, A., Van Genechten, B., Mundo, D., Tournour, M.: Damping in composite materials: properties and models. Compos. B 78, 144–152 (2015). https://doi.org/10.1016/j.compositesb.2015.03.081

  16. 16.

    Sun, C.T., Lu, Y.P.: Vibration Damping of Structural Elements, Prentice Hall PTR (1995)

  17. 17.

    Vasquez, R.E.: On the use of structural dynamics in virtual manufacturing. Int. J. Interact. Des. Manuf. 11, 103–114 (2017). https://doi.org/10.1007/s12008-014-0240-5

  18. 18.

    Adhikari, S.: Structural Dynamic Analysis with Generalized Damping Models. Analysis. Wiley, New York (2014)

  19. 19.

    Abramovich, H., Govich, D., Grunwald, A.: Damping measurements of laminated composite materials and aluminum using the hysteresis loop method. Prog. Aerosp. Sci. 78, 8–18 (2015). https://doi.org/10.1016/j.paerosci.2015.05.006

  20. 20.

    Jinguang, Z., Hairu, Y., Guozhi, C., Zeng, Z.: Structure and modal analysis of carbon fiber reinforced polymer raft frame. J. Low Freq. Noise Vib Active Control 37(3), 577–589 (2018). https://doi.org/10.1177/1461348417725960

  21. 21.

    Sarlin, E., Liu, Y., Vippola, M., Zogg, M., Ermanni, P., Vuorinen, J., Lepistö, T.: Vibration damping properties of steel/rubber/composite hybrid structures. Compos. Struct. 94, 3327–3335 (2012). https://doi.org/10.1016/j.compstruct.2012.04.035

  22. 22.

    Kim, J.-H., Chang, S.-H.: Design of µ-CNC machining centre with carbon/epoxy composite-aluminium hybrid structures containing friction layers for high damping capacity. Compos. Struct. 92, 2128–2136 (2010). https://doi.org/10.1016/j.compstruct.2009.09.043

  23. 23.

    Catera, P.G., Gagliardi, F., Mundo, D., De Napoli, L., Matveeva, A., Farkas, L.: Multi-scale modeling of triaxial braided composites for FE-based modal analysis of hybrid metal-composite gears. Compos. Struct. 182, 116–123 (2017). https://doi.org/10.1016/j.compstruct.2017.09.017

  24. 24.

    Gauntt, S.M., Campbell, R.L.: Characterization of a hybrid (steel-composite) gear with various composite materials and layups, AIAA Scitech 2019 Forum, San Diego, California, https://doi.org/10.2514/6.2019-0146

  25. 25.

    Catera, P.G., Mundo, D., Treviso, A., Gagliardi, F., Visrolia, A.: On the design and simulation of hybrid metal-composite gears. Appl. Compos. Mater. 26, 817 (2019). https://doi.org/10.1007/s10443-018-9753-6

  26. 26.

    Shweiki, S., Rezayat, A., Tamarozzi, T., Mundo, D.: Transmission Error and strain analysis of lightweight gears by using a hybrid FE-analytical gear contact model. Mech. Syst. Signal Process. 123, 573–590 (2019). https://doi.org/10.1016/j.ymssp.2019.01.024

  27. 27.

    Siemens LMS Scadas system

  28. 28.

    Salem, H., Boutchicha, D., Boudjemai, A.: Modal analysis of themulti-shaped coupled honeycomb structures used in satellites structural design. Int. J. Interact. Des. Manuf. (IJIDeM) 12, 955–967 (2018). https://doi.org/10.1007/s12008-017-0444-6

  29. 29.

    Siemens PLM software’s Simcenter

  30. 30.

    Basic Dynamic Analysis User’s Guide, Siemens NX Nastran

  31. 31.

    Ginsberg, J.H.: Mechanical and Structural Vibrations: theory and applications. Wiley, New York (2001)

  32. 32.

    Mahmoudi, S., Kervoelen, A., Robin, G., Duigou, L., Daya, E.M., Cadou, J.M.: Experimental and numerical investigation of the damping of flax–epoxy composite plates. Compos. Struct. 208, 426–433 (2019). https://doi.org/10.1016/j.compstruct.2018.10.030

  33. 33.

    M46J, Technical datasheet, Toray Composite Materials America Inc

Download references

Acknowledgements

The authors gratefully acknowledge Siemens Industry Software NV (Belgium) for the valuable support.

Author information

Correspondence to Piervincenzo G. Catera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Catera, P.G., Mundo, D., Gagliardi, F. et al. A comparative analysis of adhesive bonding and interference fitting as joining technologies for hybrid metal-composite gear manufacturing. Int J Interact Des Manuf (2020) doi:10.1007/s12008-020-00647-y

Download citation

Keywords

  • Hybrid gear
  • Finite element analysis
  • Modal damping
  • Frequency response function
  • Adhesive bonding
  • Interference fitting