Advertisement

Modeling, multi-objective optimization and cost estimation of bone drilling under micro-cooling spray technique: an integrated analysis

  • Muhammad Jamil
  • Aqib Mashood Khan
  • Hussien HegabEmail author
  • Mozammel Mia
  • Munish Kumar Gupta
Original Paper
  • 13 Downloads

Abstract

In bone fixation, frictional heat effect in orthopedic surgery has a potentially hazardous for soft tissues. Saline water irrigation has frequently been practiced preventing the thermal damage and limiting the applied cutting forces in high-speed orthopedic drilling. The application of excessive cutting fluids limits the heat and applied forces; however, it isn’t an environmentally friendly solution. In this work, a novel micro-irrigation system was developed to provide a mixture of air and saline water, having a small quantity of cooling spray (SQCS) at higher pressure into the cutting zone. This SQCS limits the frictional heat and providing lubrication and near to dry clean operative zone through a superior cooling effect compared to conventional irrigation. The carbide drills were used to make a hole in the fresh calf tibia bone. In addition, response surface methodology (RSM) was used to design the experiments. The regression models were developed between the input design parameters and performance measures to explore the relation under proposed micro-irrigation and facilitate the multi-objective optimization. Besides, cost analysis for the process has been performed. Thus, this work offers an integrated analysis to purely study and understand the bone drilling process under employing micro-cooling spray.

Keywords

Micro-cooling Cutting performance Orthopedic surgery Modeling Multi-objective optimization 

List of abbreviations

SQCS

Small quantity of cooling spray

RSM

Response surface methodology

ANOVA

Analysis of variance

GRAL

Grey relational analysis

CCD

Central composite design

DOE

Design of experiments

FEA

Finite element analysis

ML

Micro-lubrication

CNC

Computer numerical control

MLFR

Micro-lubrication flow rate

DF

Degree of freedom

Notes

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Pandey, R.K., Panda, S.S.: Drilling of bone: a comprehensive review. J. Clin. Orthop. Trauma 4, 15–30 (2013).  https://doi.org/10.1016/j.jcot.2013.01.002 CrossRefGoogle Scholar
  2. 2.
    Abouzgia, M.B., Symington, J.M.: Effect of drill speed on bone temperature. Int. J. Oral Maxillofac. Surg. 25, 394–399 (1996).  https://doi.org/10.1016/S0901-5027(06)80040-8 CrossRefGoogle Scholar
  3. 3.
    Abouzgia, M.B., James, D.F.: Temperature rise during drilling through bone. Int. J. Oral Maxillofac. Implants 12, 342–353 (1997)Google Scholar
  4. 4.
    Jamil, M., Khan, AM., Mozammel, M., et al.: Evaluating the effect of micro-lubrication in orthopedic drilling. Proc. Inst. Mech. Eng. H. J. Eng. Med. (2019).  https://doi.org/10.1177/0954411919865389 CrossRefGoogle Scholar
  5. 5.
    Isler, S.C., Cansiz, E., Tanyel, C., et al.: The effect of irrigation temperature on bone healing. Int. J. Med. Sci. 8, 704–708 (2011).  https://doi.org/10.7150/ijms.8.704 CrossRefGoogle Scholar
  6. 6.
    Ueda, T., Wada, A., Hasegawa, K.I., et al.: The effect of drill design elements on drilling characteristics when drilling bone. J. Biomech. Sci. Eng. 5, 399–407 (2010).  https://doi.org/10.1299/jbse.5.399 CrossRefGoogle Scholar
  7. 7.
    Sener, B.C., Dergin, G., Gursoy, B., et al.: Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin. Oral Implant Res. 20, 294–298 (2009).  https://doi.org/10.1111/j.1600-0501.2008.01643.x CrossRefGoogle Scholar
  8. 8.
    Harder, S., Egert, C., Wenz, H.J., et al.: Influence of the drill material and method of cooling on the development of intrabony temperature during preparation of the site of an implant. Br. J. Oral Maxillofac. Surg. 51, 74–78 (2013).  https://doi.org/10.1016/j.bjoms.2012.02.003 CrossRefGoogle Scholar
  9. 9.
    Gehrke, S.A., Neto, H.L., Mardegan, F.E.C.: Investigation of the effect of movement and irrigation systems on temperature in the conventional drilling of cortical bone. Br. J. Oral Maxillofac. Surg. 51, 953–957 (2013).  https://doi.org/10.1016/j.bjoms.2012.10.023 CrossRefGoogle Scholar
  10. 10.
    Li, C., Zhao, H., Ma, H., et al.: Simulation study on effect of cutting parameters and cooling mode on bone-drilling temperature field of superhard drill. Int. J. Adv. Manuf. Technol. (2015).  https://doi.org/10.1007/s00170-015-7259-z CrossRefGoogle Scholar
  11. 11.
    Tsuzuki, T., Yanai, H., Kukita, C., Samejima, H., Shinyama, Y.: Irrigation system equipped technical on a high-speed air drill ment to the hand piece of the high-speed air drill. Neurol. Med. Chir. 38, 173–174 (1998)CrossRefGoogle Scholar
  12. 12.
    Siljander, B., Wang, A., Zhang, L., et al.: Cool mist irrigation improves heat dissipation during surgical bone drilling. J. Neurol. Surg. Part B Skull Base 75, 243–246 (2014).  https://doi.org/10.1055/s-0034-1368098 CrossRefGoogle Scholar
  13. 13.
    Sasaki, M., Morris, S., Goto, T., et al.: Spray-irrigation system attached to high-speed drills for simultaneous prevention of local heating and preservation of a clear operative field in spinal surgery. Neurol. Med. Chir. 50, 900–904 (2010).  https://doi.org/10.2176/nmc.50.900 CrossRefGoogle Scholar
  14. 14.
    Khan, A.M., Jamil, M., Mia, M., et al.: Multi-objective optimization for grinding of AISI D2 steel with Al2O3 wheel under MQL. Materials 11, 2269 (2018).  https://doi.org/10.3390/ma11112269 CrossRefGoogle Scholar
  15. 15.
    Pandey, R.K., Panda, S.S.: Modelling and optimization of temperature in orthopaedic drilling: an in vitro study. Acta Bioeng. Biomech. 16, 107–116 (2014).  https://doi.org/10.5277/abb140113 CrossRefGoogle Scholar
  16. 16.
    Lughmani, W.A., Bouazza-Marouf, K., Ashcroft, I.: Drilling in cortical bone: a finite element model and experimental investigations. J. Mech. Behav. Biomed. Mater. 42, 32–42 (2015).  https://doi.org/10.1016/j.jmbbm.2014.10.017 CrossRefGoogle Scholar
  17. 17.
    Mashood Khan, A., Ning, H., Liang, L., Jamil, M.: Comment to paper entitled “Experimental investigation of machinability characteristics and multiresponse optimization of end milling in aluminium composites using RSM based grey relational analysis” Measurement 105 (2017) 78–86. Measurement 119, 175–177 (2018).  https://doi.org/10.1016/j.measurement.2018.01.057 CrossRefGoogle Scholar
  18. 18.
    Pandey, R.K., Panda, S.S.: Multi-performance optimization of bone drilling using Taguchi method based on membership function. Meas. J. Int. Meas. Confed. 59, 9–13 (2015).  https://doi.org/10.1016/j.measurement.2014.09.038 CrossRefGoogle Scholar
  19. 19.
    Li, S., Demirci, E., Silberschmidt, V.V.: Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. J. Mech. Behav. Biomed. Mater. 21, 109–120 (2013).  https://doi.org/10.1016/j.jmbbm.2013.02.021 CrossRefGoogle Scholar
  20. 20.
    Augustin, G., Davila, S., Udilljak, T., et al.: Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int. Orthop. 36, 1449–1456 (2012).  https://doi.org/10.1007/s00264-012-1491-z CrossRefGoogle Scholar
  21. 21.
    Lee, J.E., Ozdoganlar, O.B., Rabin, Y.: An experimental investigation on thermal exposure during bone drilling. Med. Eng. Phys. 34, 1510–1520 (2012).  https://doi.org/10.1016/j.medengphy.2012.03.002 CrossRefGoogle Scholar
  22. 22.
    Jamil, M., Khan, A.M., He, N., et al.: Multi-response optimisation of machining aluminium-6061 under eco-friendly electrostatic minimum quantity lubrication environment. Int. J. Mach. Mach. Mater. 5–6, 459–479 (2019).  https://doi.org/10.1504/IJMMM.2019.10023118 CrossRefGoogle Scholar
  23. 23.
    Uhart, M., Patrouix, O., Aoustin, Y.: Improving manufacturing of aeronautical parts with an enhanced industrial Robotised Fibre Placement Cell using an external force-vision scheme. Int. J. Interact. Des. Manuf. (IJIDeM) 10(1), 15–35 (2016)CrossRefGoogle Scholar
  24. 24.
    Vergnano, A., Berselli, G., Pellicciari, M.: Interactive simulation-based-training tools for manufacturing systems operators: an industrial case study. Int. J. Interact. Des. Manuf. (IJIDeM) 11(4), 785–797 (2017)CrossRefGoogle Scholar
  25. 25.
    Goyal, T., Walia, R.S., Sidhu, T.S.: Taguchi and utility based concept for determining optimal process parameters of cold sprayed coatings for multiple responses. Int. J. Interact. Des. Manuf. (IJIDeM) 11(4), 761–769 (2017)CrossRefGoogle Scholar
  26. 26.
    Karaca, F., Aksakal, B., Kom, M.: Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med. Eng. Phys. 33, 1221–1227 (2011).  https://doi.org/10.1016/j.medengphy.2011.05.013 CrossRefGoogle Scholar
  27. 27.
    Soriano, J., Iriarte, L.M., Eguren, J.A., et al.: Effects of rotational speed and feed rate on temperature rise, feed force and cutting torque when drilling bovine cortical bone. In: AIP conference proceedings (2012)Google Scholar
  28. 28.
    Soriano, J., Garay, A., Aristimuño, P., et al.: Effects of rotational speed, feed rate and tool type on temperatures and cutting forces when drilling bovine cortical bone. Mach. Sci. Technol. 17, 611–636 (2013).  https://doi.org/10.1080/10910344.2013.837353 CrossRefGoogle Scholar
  29. 29.
    Augustin, G., Davila, S., Udilljak, T., et al.: Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int. Orthop. (2012).  https://doi.org/10.1007/s00264-012-1491-z CrossRefGoogle Scholar
  30. 30.
    Lee, J., Rabin, Y., Ozdoganlar, O.B.: A new thermal model for bone drilling with applications to orthopaedic surgery. Med. Eng. Phys. 33(10), 1234–1244 (2011).  https://doi.org/10.1016/j.medengphy.2011.05.014 CrossRefGoogle Scholar
  31. 31.
    Alam, K., Mitrofanov, A.V., Silberschmidt, V.V.: Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Med. Eng. Phys. (2011).  https://doi.org/10.1016/j.medengphy.2010.10.003 CrossRefGoogle Scholar
  32. 32.
    Sui, J., Sugita, N., Ishii, K., et al.: Mechanistic modeling of bone-drilling process with experimental validation. J. Mater. Process. Technol. 214, 1018–1026 (2014).  https://doi.org/10.1016/j.jmatprotec.2013.11.001 CrossRefGoogle Scholar
  33. 33.
    Basiaga, M., Paszenda, Z., Szewczenko, J., Kaczmarek, M.: Numerical and experimental analyses of drills used in osteosynthesis. Acta Bioeng. Biomech. 13, 29–36 (2011)Google Scholar
  34. 34.
    Pandey, R.K., Panda, S.S.: Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach. J. Intell. Manuf. 26, 1121–1129 (2015).  https://doi.org/10.1007/s10845-013-0844-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Jamil
    • 1
    • 2
  • Aqib Mashood Khan
    • 1
    • 2
  • Hussien Hegab
    • 3
    Email author
  • Mozammel Mia
    • 4
  • Munish Kumar Gupta
    • 5
  1. 1.College of Mechanical and Electrical EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Industrial Engineering DepartmentUniversity of Engineering and Technology TaxilaTaxilaPakistan
  3. 3.Mechanical Design and Production Engineering DepartmentCairo UniversityGizaEgypt
  4. 4.Mechanical EngineeringImperial College LondonLondonUK
  5. 5.Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical EngineeringShandong UniversityJinanPeople’s Republic of China

Personalised recommendations