Advertisement

Fatigue crack growth of new FML composites for light ship buildings under predominant mode II loading condition

  • Antonio GiallanzaEmail author
  • Francesco Parrinello
  • Valerio Ruggiero
  • Giuseppe Marannano
Original Paper

Abstract

The use of light but strong materials is largely studied in various area of the shipbuilding, this because the need of reducing the weight, and especially the weight of all the structures above the main deck assume primary importance for the stability. Traditionally in fast boats like fast ferries, hydrofoils, patrol boats, the typical materials are Aluminum alloy or composites, both those materials have advantages and disadvantages, but the new development of technologies made possible to combine them, in order to have a new material, combining the advantages of both, in terms of fatigue resistance, firefighting characteristics. In this paper, predominant mode II fatigue delamination tests of fiber metal laminates made of alternating layers of 2024-T3 aluminum alloy sheets and unidirectional E-Glass/epoxy laminates are presented. Several experimental tests are carried out employing the End Notched Flexure fixture and a progressive damage model is used to simulate the damage accumulation in the aluminum-composite interface, in the localized area in front of the crack tip, where micro-cracking or void formation reduce the delamination strength during fatigue tests. In particular, the numerical model is based on the cohesive zone approach and on the analytical definition of a damage parameter, directly related to the fatigue crack growth rate da/dN. The numerical model, implemented in ANSYS environment, uses a fracture mechanics-based criterion in order to determine the damage propagation. In particular, the study has allowed to determine the damage model constants that are used for numerical verification of the experimental results.

Keywords

Fibre metal laminates End notched flexure FE analysis 

Notes

References

  1. 1.
    Giallanza, A., Cannizzaro, L., Porretto, M., Marannano, G.: Design of the stabilization control system of a high-speed craft. Lecture Notes in Mechanical Engineering, 575–584 (2017)Google Scholar
  2. 2.
    Cannizzaro, L., Giallanza, A., Marannano, G., Muraca, E., Palladino, M.: Dual compensation control-system for offshore logistic equipment. In: 17th International Conference on Ship and Shipping Research—NAV 2012, Naples (Italy), 2012Google Scholar
  3. 3.
    Giallanza, A., Marannano, G., Pasta, A.: Structural optimization of innovative rudder for HSC. In: 17th International Conference on Ship and Shipping Research—NAV 2012, Naples (Italy), 2012Google Scholar
  4. 4.
    Fragapane, S., Giallanza, A., Cannizzaro, L., Pasta, A., Marannano, G.: Experimental and numerical analysis of aluminum-aluminum bolted joints subject to an indentation process. Int. J. Fatigue 80(6), 332–340 (2015)CrossRefGoogle Scholar
  5. 5.
    Marannano, G., Pasta, A., Parrinello, F., Giallanza, A.: Effect of the indentation process on fatigue life of drilled specimens. J. Mech. Sci. Technol. 29(7), 2847–2856 (2015)CrossRefGoogle Scholar
  6. 6.
    Marannano, G., Parrinello, F., Giallanza, A.: Effects of the indentation process on fatigue life of drilled specimens: optimization of the distance between adjacent holes. J. Mech. Sci. Technol. 30(3), 1119–1127 (2016)CrossRefGoogle Scholar
  7. 7.
    Marannano, G.V., Pasta, A.: An analysis of interface delamination mechanisms in orthotropic and hybrid fiber-metal composite laminates. Eng. Fract. Mech. 74(4), 612–626 (2007)CrossRefGoogle Scholar
  8. 8.
    Marannano, G.V., Mistretta, L., Cirello, A., Pasta, S.: Crack growth analysis at adhesive-adherent interface in bonded joints under mixed mode I/II. Eng. Fract. Mech. 75(18), 5122–5133 (2008)CrossRefGoogle Scholar
  9. 9.
    Dugdale, D.S.: Yelding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)CrossRefGoogle Scholar
  10. 10.
    Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Alfano, G., Crisfield, M.A.: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Methods Eng. 50(7), 1701–1736 (2001)CrossRefGoogle Scholar
  12. 12.
    Needleman, A.: An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38, 289–324 (1990)CrossRefGoogle Scholar
  13. 13.
    Schapery, R.A.: A theory of crack initiation and growth in viscoelastic media. Int. J. Fract. 11(4), 549–562 (1975)CrossRefGoogle Scholar
  14. 14.
    Tvergaard, V.: Effect of fiber debonding in a whisker-reinforced metal. Mater. Sci. Eng. 125, 203–213 (1990)CrossRefGoogle Scholar
  15. 15.
    Costanzo, F., Allen, D.H.: A continuum thermodynamic analysis of cohesive zone models. Int. J. Eng. Sci. 33(15), 2197–2219 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Allen, D.H., Searcy, C.R.: Numerical aspects of a micromechanical model of a cohesive zone. J. Reinf. Plast. Compos. 19(3), 240–248 (2000)CrossRefGoogle Scholar
  17. 17.
    Maiti, S., Geubelle, P.H.: A cohesive model for fatigue failure of polymers. Eng. Fract. Mech. 72, 691–708 (2005)CrossRefGoogle Scholar
  18. 18.
    Turon, A., Camanho, P.P., Costa, J., Dávila, C.G.: A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38, 1072–1089 (2006)CrossRefGoogle Scholar
  19. 19.
    Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)CrossRefGoogle Scholar
  20. 20.
    Turon, A., Costa, J., Camanho, P.P., Dávila, C.G.: Simulation of delamination in composites under high-cycle fatigue. Compos. A Appl. Sci. Manuf. 38, 2270–2282 (2007)CrossRefGoogle Scholar
  21. 21.
    Turon, A., Camanho, P.P., Costa, J., Renart, J.: Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos. Struct. 92, 1857–1864 (2010)CrossRefGoogle Scholar
  22. 22.
    Wang, B., Siegmund, T.: A numerical analysis of constraint effects in fatigue crack growth by use of an irreversible cohesive zone model. Int. J. Fract. 132(2), 175–196 (2005)CrossRefGoogle Scholar
  23. 23.
    Roth, S., Hütter, G., Kuna, M.: Simulation of fatigue crack growth with a cyclic cohesive zone model. Int. J. Fract. 188(1), 23–45 (2014)CrossRefGoogle Scholar
  24. 24.
    Jimenez, S., Liu, X., Duddu, R., Waisman, H.: A discrete damage zone model for mixed-mode delamination of composites under high-cycle fatigue. Int. J. Fract. 190(1–2), 53–74 (2014)CrossRefGoogle Scholar
  25. 25.
    Moroni, F., Pirondi, A.: A procedure for the simulation of fatigue crack growth in adhesively bonded joints based on the cohesive zone model and different mixed-mode propagation criteria. Eng. Fract. Mech. 78, 1808–1816 (2011)CrossRefGoogle Scholar
  26. 26.
    De Moura, M.F.S.F., Gonçalves, J.P.M.: Cohesive zone model for high-cycle fatigue of composite bonded joints under mixed-mode I + II loading. Eng. Fract. Mech. 140, 31–42 (2015)CrossRefGoogle Scholar
  27. 27.
    De Moura, M.F.S.F., Gonçalves, J.P.M.: Development of a cohesive zone model for fatigue/fracture characterization of composite bonded joints under mode II loading. Int. J. Adhes. Adhes. 54, 224–230 (2014)CrossRefGoogle Scholar
  28. 28.
    Parrinello, F., Marannano, G., Borino, G., Pasta, A.: Frictional effect in mode II delamination: experimental test and numerical simulation. Eng. Fract. Mech. 110, 258–269 (2013)CrossRefGoogle Scholar
  29. 29.
    Parrinello, F., Marannano, G., Borino, G.: A thermodynamically consistent cohesive-frictional interface model for mixed mode delamination. Eng. Fract. Mech. 153, 61–79 (2016)CrossRefGoogle Scholar
  30. 30.
    Parrinello, F., Borino, G.: Integration of finite displacement interface element in reference and current configurations. Meccanica 53(6), 1455–1468 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Parrinello, F.: Analytical solution of the 4ENF test with interlaminar frictional effects and evaluation of Mode II delamination toughness. J. Eng. Mech. 144(4), 04018011 (2018)CrossRefGoogle Scholar
  32. 32.
    Kießling, R., Ihlemann, J., Pohl, M., Stommel, M., Dammann, C., Mahnken, R., Bobbert, M., Meschut, G., Hirsch, F., Kästner, M.: On the design, characterization and simulation of hybrid metal-composite interfaces. Appl. Compos. Mater. (2016).  https://doi.org/10.1007/s10443-016-9526-z CrossRefGoogle Scholar
  33. 33.
    Neto, J.A.B.P., Campilho, R.D.S.G., da Silva, L.F.M.: Parametric study of adhesive joints with composites. Int. J. Adhes. Adhes. 37, 96–101 (2012)CrossRefGoogle Scholar
  34. 34.
    Baron Saiz, C., Ingrassia, T., Nigrelli, V., Ricotta, V.: Thermal stress analysis of different full and ventilated disc brakes. Frattura ed Integrità Strutturale 9(34), 608–621 (2015)Google Scholar
  35. 35.
    Ingrassia, T., Lombardo, B., Nigrelli, V., Ricotta, V., Nalbone, L., D’Arienzo, A., D’Arienzo, M., Porcellini, G.: Influence of sutures configuration on the strength of tendon-patch joints for rotator cuff tears treatment. Injury (2019)Google Scholar
  36. 36.
    Ingrassia, T., Nalbone, L., Nigrelli, V., Pisciotta, D., Ricotta, V.: Influence of the metaphysis positioning in a new reverse shoulder prosthesis. Lecture Notes in Mechanical Engineering, 469–478 (2017)Google Scholar
  37. 37.
    Krueger, R.: Virtual crack closure technique: history, approach and applications. Appl. Mech. Rev. 57(2), 109–143 (2004)CrossRefGoogle Scholar
  38. 38.
    Marannano, G., Pasta, A., Giallanza, A.: A model for predicting the mixed-mode fatigue crack growth in a bonded joint. Fatigue Fract. Eng. Mater. Struct. 37(4), 380–390 (2014)CrossRefGoogle Scholar
  39. 39.
    Wahab, M.A.: Mechanics of Adhesives in Composite and Metal Joints. DEStech Publications Inc, USA (2014)Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering DepartmentUniversity of PalermoPalermoItaly
  2. 2.Engineering DepartmentUniversity of MessinaMessinaItaly

Personalised recommendations