Advertisement

Robust interactive design for ergonomics and safety: R-IDEaS procedure and applications

  • Andrea TaralloEmail author
  • Giuseppe Di Gironimo
  • Salvatore Gerbino
  • Amalia Vanacore
  • Antonio Lanzotti
Original Paper
  • 18 Downloads

Abstract

This paper presents an interactive design method aimed at improving workplace health and safety. Human performances and anthropometric variability are carefully considered to make the workplace “robust” from a safety point of view. This topic is of increasing interest to industries that plan to make safer workplaces without renouncing to their productivity targets. A challenging issue concerns the evaluation of the effects of sources of anthropometric variability in the process by using just a small sample of real or digital humans. The adoption of a discretization technique helps to solve this problem and saving time and resources. Through real industrial case studies, the authors investigate the main ergonomic and safety issues faced during the development of both manual and human–robot hybrid workcells.

Keywords

Design methods Robust design Virtual ergonomics Virtual safety Human–robot interaction Digital human modelling 

Notes

Acknowledgements

The authors would like to deeply thank all the anonymous reviewers for their careful, constructive and insightful comments on this work. Their contribution has significantly helped us in improving this manuscript.

References

  1. 1.
    U.S. Bureau of Labor Statistics, U.S. Department of Labor: Employer-Reported Workplace Injury and Illnesses. https://www.bls.gov/iif (2016). Last retrieved 14 May 2018
  2. 2.
    Di Gironimo, G., Di Martino, C., Lanzotti, A., Marzano, A., Russo, G.: Improving MTM-UAS to predetermine automotive maintenance times. Int. J. Interact. Des. Manuf. 6(4), 265–273 (2012).  https://doi.org/10.1007/s12008-012-0158-8 CrossRefGoogle Scholar
  3. 3.
    Riley, M.W., Dhuyvetter, R.L.: Design cost savings and ergonomics. In: Proceedings of the XIVth Triennial Congress of the International Ergonomics Association and 44th Annual Meeting of the Human factors and Ergonomics Association, ‘Ergonomics for the New Millennium’, July 29–Aug 4 2000, San Diego, CA USA (2000)Google Scholar
  4. 4.
    Shaikh, I., Jayaram, U., Jayaram, S., Palmer, C.: Participatory ergonomics using VR integrated with analysis tools. In: Proceedings of the 2004 Winter Simulation Conference, 2004, Washington, DC, USA, vol. 2, pp. 1746–1754 (2004).  https://doi.org/10.1109/wsc.2004.1371526
  5. 5.
    Tarallo, A., Moscato, I., Bubelis, E., Barucca, L.: Preliminary CAD implementation of EU-DEMO primary heat transfer systems for HCPB breeding blanket option. Fusion Eng. Des. (2019).  https://doi.org/10.1016/j.fusengdes.2019.03.102 Google Scholar
  6. 6.
    Fischer, X.: Characteristics, development and use of models in interactive design. In: Virtual Concept (Proceedings), vol. 1, 1st edn. ESTIA-IEEE Springer, Biarritz (2005)Google Scholar
  7. 7.
    Franciosa, P., Gerbino, S., Lanzotti, A., Silvestri, L.: Improving comfort of shoe sole through experiments based on CAD-FEM modeling. Med. Eng. Phys. 35(1), 36–46 (2013).  https://doi.org/10.1016/j.medengphy.2012.03.007 CrossRefGoogle Scholar
  8. 8.
    Azizi, A., Ghafoorpoor Yazdi, P., Hashemipour, M.: Interactive design of storage unit utilizing virtual reality and ergonomic framework for production optimization in manufacturing industry. Int. J. Interact. Des. Manuf. 13, 373 (2019).  https://doi.org/10.1007/s12008-018-0501-9 CrossRefGoogle Scholar
  9. 9.
    Patalano, S., Vitolo, F., Lanzotti, A.: A digital pattern approach to the design of an automotive power window by means of object-oriented modelling. Appl. Cond. Monit. 2, 199–207 (2015).  https://doi.org/10.1007/978-3-319-14532-7_21 CrossRefGoogle Scholar
  10. 10.
    Briand, R., Fischer, X., Arrijuria, O., Terrasson, G.: Multidisciplinary design process based on virtual prototyping for microsystem design. Virtual Phys. Prototyp. 5(3), 153–162 (2010).  https://doi.org/10.1080/17452759.2010.504084 CrossRefGoogle Scholar
  11. 11.
    Didier Casner, D., Houssin, R., Renaud, J., Knittel, D.: Optimization as an innovative design approach to improve the performances and the functionalities of mechatronic devices. In: Fischer, X., et al. (eds.) Research in Interactive Design, vol. 4. Springer, Berlin (2016).  https://doi.org/10.1007/978-3-319-26121-8. ISBN 978-3-319-26119-5Google Scholar
  12. 12.
    Lanzotti, A., Renno, F., Russo, M., Russo, R., Terzo, M.: Virtual prototyping of an automotive magnetorheological semi-active differential by means of the reverse engineering techniques. Eng. Lett. 23(3), 115–124 (2015)Google Scholar
  13. 13.
    Cagin, S., Fischer, X., Delacourt, E., Bourabaa, N., Morin, C., Coutellier, D., Carré, B., Loumé, S.: A new reduced model of scavenging to optimize cylinder design. Simulation 92(6), 507–520 (2016).  https://doi.org/10.1177/0037549716644516 CrossRefGoogle Scholar
  14. 14.
    Di Gironimo, G., Patalano, S., Tarallo, A.: Innovative assembly process for modular train and feasibility analysis in virtual environment. Int. J. Interact. Des. Manuf. 3(2), 93–101 (2009).  https://doi.org/10.1007/s12008-009-0066-8 CrossRefGoogle Scholar
  15. 15.
    Di Gironimo, G., Franciosa, P., Gerbino, S.: A RE-CAE methodology for re-designing free shape objects interactively. Int. J. Interact. Des. Manuf. 3(4), 273–283 (2009).  https://doi.org/10.1007/s12008-009-0082-8 CrossRefGoogle Scholar
  16. 16.
    Savin, J.: Digital human manikins for work-task ergonomic assessment. Proc. Inst. of Mech. Eng. Part B J. Eng. Manuf. 225(8), 1401–1409 (2011)CrossRefGoogle Scholar
  17. 17.
    Lanzotti, A., Carbone, F., Grazioso, S., Renno, F., Staiano, M.: A new interactive design approach for concept selection based on expert opinion. Int. J. Interact. Des. Manuf.: IJIDeM (2018).  https://doi.org/10.1007/s12008-018-0482-8 Google Scholar
  18. 18.
    Di Gironimo, G., Mozzillo, R., Tarallo, A.: From virtual reality to web-based multimedia maintenance manuals. Int. J. Interact. Des. Manuf. 2013(7), 183–190 (2013).  https://doi.org/10.1007/s12008-013-0185-0 CrossRefGoogle Scholar
  19. 19.
    Patalano, S., Lanzotti, A., Del Giudice, D.M., Vitolo, F., Gerbino, S.: On the usability assessment of the graphical user interface related to a digital pattern software tool. Int. J. Interact. Des. Manuf. 11(3), 457–469 (2017)CrossRefGoogle Scholar
  20. 20.
    Di Gironimo, G., Marzano, A., Tarallo, A.: Human robot interaction in virtual reality. In: Proceedings of Eurographics Italian Chapter 2007, Trento, ItalyGoogle Scholar
  21. 21.
    Di Gironimo, G.: Design for maintainability using virtual manikins: a case study on the air-conditioning system of a regional train. In: Proceedings of 5th CIRP International Conference on Intelligent Computation in Manufacturing Engineering, Ischia (Naples), Italy. 26th–28th July 2006, pp. 225–230 (2006)Google Scholar
  22. 22.
    Tarallo, A., et al.: A cyber-physical system for production monitoring of manual manufacturing processes. Int. J. Interact. Des. Manuf. (2018).  https://doi.org/10.1007/s12008-018-0493-5 Google Scholar
  23. 23.
    Lanzotti, A.: Robust design of car packaging in virtual environment. Int. J. Interact. Des. Manuf. 2, 39–46 (2008)CrossRefGoogle Scholar
  24. 24.
    Waters, T., Putz-Anderson, V., Garg, A., Fine, L.: Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 36(7), 749–766 (1993)CrossRefGoogle Scholar
  25. 25.
    Occhipinti, E.: OCRA: a concise index for the assessment of exposure to repetitive movements of the upper limbs. Ergonomics 41(9), 1290–1311 (1998)CrossRefGoogle Scholar
  26. 26.
    Karhu, O., Kansi, P., Kuorinka, I.: Correcting working postures in industry: a practical method for analysis. Appl. Ergon. 8, 199–201 (1977)CrossRefGoogle Scholar
  27. 27.
    McAtamney, L., Corlett, E.N.: RULA: a survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 24(2), 91–99 (1993)CrossRefGoogle Scholar
  28. 28.
    Moore, J.S., Garg, A.: The strain index: a proposed method to analyze jobs for risk of distal upper extremity disorders. Am. Ind. Hyg. Assoc. J. 56(5), 443–458 (1995)CrossRefGoogle Scholar
  29. 29.
    Lanzotti, A., Vanacore, A.: An efficient and easy discretizing method for the treatment of noise factors in robust design. Asian J. Qual. 8(3), 188–197 (2007).  https://doi.org/10.1108/15982688200700032 CrossRefGoogle Scholar
  30. 30.
    Lanzotti, A., Vanacore, A., Percuoco, C.: Robust Ergonomic Optimization of Car Packaging in Virtual Environment. In: Eynard B., Nigrelli V., Oliveri S., Peris-Fajarnes G., Rizzuti S. (eds) Advances on Mechanics, Design Engineering and Manufacturing. Lecture Notes in Mechanical Engineering. pp. 1177–1186, Springer, Cham (2017)  https://doi.org/10.1007/978-3-319-45781-9_118 Google Scholar
  31. 31.
    Park, S.H.: Robust Design and Analysis for Quality Engineering. Chapman and Hall, London (1996)Google Scholar
  32. 32.
    Byrne, D.M., Taguchi, S.: The Taguchi approach to parameter design. Qual. Prog. 20(12), 19–26 (1987)Google Scholar
  33. 33.
    Patalano, S., Vitolo, F., Lanzotti, A.: Automotive power window system design: object-oriented modelling and design of experiments integration within a digital pattern approach. Mech. Ind. 2016, 505 (2016).  https://doi.org/10.1051/meca/2015104 CrossRefGoogle Scholar
  34. 34.
    Wu, J., Hamada, M.S.: Experiments: Planning, Analysis, and Optimization, 2nd edn. Wiley, Hoboken, New Jersey (USA). (2009). ISBN: 978-0-471-69946-0Google Scholar
  35. 35.
    Reed, M.P., et al.: Effects of vehicle interior geometry and anthropometric variables on automobile driving posture. Hum. Factors 42(4), 541–552 (2000)CrossRefGoogle Scholar
  36. 36.
    D’Errico, J., Zaino, N.: Statistical tolerancing using a modification of Taguchi’s method. Technometrics 30(4), 397–405 (1988).  https://doi.org/10.2307/1269802 CrossRefGoogle Scholar
  37. 37.
    https://www.plm.automation.siemens.com. Last retrieved 14 Oct 2018
  38. 38.
    Krul, A.J., Daanen, H.A.M., Choi, H.: Self-reported and measured weight, height and body mass index (BMI) in Italy, the Netherlands and North America. Eur. J. Pub. Health 21(4), 414–419 (2010)CrossRefGoogle Scholar
  39. 39.
    Caputo, F., Di Gironimo, G., Marzano, A.: Ergonomic optimization of a manufacturing system work cell in a virtual environment. Acta Polytech. 46(5), 21–27 (2006). ISSN:1210-2709Google Scholar
  40. 40.
    Reinhart, G, Vogel, W., Rösel, W., Wallhoff, F., Lenz, C.: JAHIR—Joint action for humans and industrial robots. In: Fachforum: Intelligente Sensorik - Robotik und Automation. Bayern Innovativ - Gesellschaft für Innovation und Wissenstransfer mbH (2007)Google Scholar
  41. 41.
    Bischoff, R.: The KUKA-DLR lightweight robot arm—a new reference platform for robotics research and manufacturing. In: Proceedings of ISR/ROBOTIK (2010), Munich, Germanypp. 741–748. ISBN: 978-3-8007-3273-9Google Scholar
  42. 42.
  43. 43.
    Di Gironimo, G., Matrone, G., Tarallo, A., Trotta, M.: A virtual reality approach for usability assessment: case study on a wheelchair-mounted manipulator. J. Eng. Comput.: JEC 29, 359–373 (2013).  https://doi.org/10.1007/s00366-012-0274-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial Engineering (DII)University of Naples Federico IINaplesItaly
  2. 2.Department DiBT - Engineering DivisionUniversity of MoliseCampobassoItaly

Personalised recommendations