Effect of friction stir welding (FSW) parameters on the peak temperature and the residual stresses of aluminum alloy 6061-T6: numerical modelisation

  • Mustapha Kaid
  • Mokhtar Zemri
  • Abdessamad BrahamiEmail author
  • Samir Zahaf
Technical Paper


In this paper, numerical modelisation of thermo mechanical behavior of FSW process of 6061-T6 aluminum alloy were performed. A three dimensional (3D), transient, non-linear structural-thermal model was developed using ANSYS software to simulate the distribution of the temperature and the mechanical stresses during FSW of the aluminum alloy. The simulated temperature distributions (profile and peak temperature) and the residual stress were compared with experimental values. The results of the simulation are in good concurrence with that of experimental results.


FSW process Numerical modelisation Residual stress Temperature Welding parameter 



  1. 1.
    Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templesmith, P., Dawes, C.J.: “Friction stir butt welding” International patent application no. PCT/GB92/02203 and GB patent application no. 9125978.8, 6 December 1991Google Scholar
  2. 2.
    Mishra, R.S., Ma, Z.Y.: Friction stir welding and processing. Mater. Sci. Eng. R 50, 1–78 (2005)CrossRefGoogle Scholar
  3. 3.
    Rodriguez, N.A., Almanza, E., Alvarez, C.J.: Study of friction stir welded A319 and A413 aluminum casting alloys. J. Mater. Sci. 40, 4307–4312 (2005)CrossRefGoogle Scholar
  4. 4.
    Mahmood, H.: Ford Motor Company, 2003, www.autosteel.orgaccessed, 6/5/2006
  5. 5.
    Sued, M., Pons, D.: Dynamic interaction between machine, tool, and substrate in bobbin friction stir welding. Int. J. Manuf. Eng. 2016, 1–14 (2016)Google Scholar
  6. 6.
    Al-Badour, F., Nesar, M., Abdelrahman, S., Bazoune, A.: Thermo-mechanical finite element model of friction stir welding of dissimilar alloys. Int. J. Adv. Manuf. Technol. 72, 607 (2014)CrossRefGoogle Scholar
  7. 7.
    Al-Badour, F., Nesar, M., Abdelrahman, S., Bazoune, A.: Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes. J. Mater. Process. Technol. 213, 1433 (2013)CrossRefGoogle Scholar
  8. 8.
    Rodrigues, D.M., Loureiro, A., Leitao, C., Leal, R.M., Chaparro, B.M., Vilaça, P.: Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds. Mater. Des. 30(6), 1913–1921 (2009)CrossRefGoogle Scholar
  9. 9.
    Said, M.T.S.M., et al.: Experimental study on effect of welding parameters of friction stir welding (FSW) on Aluminium AA5083 T-joint. Inf. Technol. J. 15(4), 99–107 (2016)CrossRefGoogle Scholar
  10. 10.
    Chen, C., Kovacevic, R.: Thermomechanical modelling and force analysis of friction stir welding by the finite element method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 218, 509–519 (2004)CrossRefGoogle Scholar
  11. 11.
    Dong, P., Lu, F., Hong, J.K., Cao, Z.: Coupled thermomechanical analysis of friction stir welding process using simplified models. Sci. Technol. Weld. Join. 6(5), 281–287 (2001)CrossRefGoogle Scholar
  12. 12.
    Deng, X., Xu, S.: Solid mechanics simulation of friction stir welding process. Trans. NAMR SME 29, 631–638 (2001)Google Scholar
  13. 13.
    Chao, Y., Qi, X.: Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6001-T6. J. Mater. Process. Manuf. Sci. 7(10), 215–233 (1998)CrossRefGoogle Scholar
  14. 14.
    Madhusudhan, G., et al.: Microstructure, residual stress distribution and mechanical properties of friction-stir AA 6061 aluminium alloy weldments. In: Proc. National Seminar on Non-Destructive Evaluation, 7–9 Dec 2006, HyderabadGoogle Scholar
  15. 15.
    Brahami, A., et al.: Fatigue crack growth rate, microstructure and mechanical properties of diverse range of aluminum alloy: a comparison. Mech. Mech. Eng. 22(1), 329–339 (2018)Google Scholar
  16. 16.
    Tekriwal, P., Mazumder, J.: Transient and residual thermal strain–stress analysis of GMAW. J. Eng. Mater. Technol. 113, 336–343 (1991)CrossRefGoogle Scholar
  17. 17.
    Zhu, X.K., Chao, Y.J.: Effects of temperature-dependent material properties on welding simulation. Comput. Struct. 80, 967–976 (2002)CrossRefGoogle Scholar
  18. 18.
    Radaj, D.: Heat Effects of Welding—Temperature Field, Residual Stress, Distortion. Springer, Berlin (1992)Google Scholar
  19. 19.
    Chao, Y.J., Qi, X.: Heat transfer and thermo-mechanical modeling of friction stir joining of AA6061-T6 plates. In: Proceedings of the First International Symposium on Friction Stir Welding, Thousand Oaks, CA, USA (1999)Google Scholar
  20. 20.
    Bastier, A.: Modélisation du soudage d’alliages d’aluminium par friction et malaxage. Ph.D. thesis, École Polytechnique, France (2006)Google Scholar
  21. 21.
    Singarapu, U., Adepu, K., Arumalle, S.: Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy. J. Magnes. Alloys 3(4), 335–344 (2015)CrossRefGoogle Scholar
  22. 22.
    Wang, X.L., Feng, Z., David, S.A., Spooner, S., Hubbard, C.R.: Neutron diffraction study of residual stresses in friction stir welds. In: Sixth International Conference on Residual Streses, IOM Communications, London (2000)Google Scholar
  23. 23.
    Lawrjanie, D., Abisror, A., Decker, C., Koçak, M., Dos Santos, J.: Numerial simulation of friction stir welding. Mater. Sci. Forum 426, 29932998 (2003)Google Scholar
  24. 24.
    Ordaz-Hernandez, K., Fischer, X., Bennis, F.: A mathematical representation for mechanical model assessment: numerical model qualification method. Int. J. Comput. Math. Sci 1(4), 216–226 (2007)MathSciNetGoogle Scholar
  25. 25.
    Doré, R., Pailhes, J., Fischer, X., Nadeau, J.-P.: Identification of sensory variables towards the integration of user requirements into preliminary design. Int. J. Ind. Ergon. 37(1), 1–11 (2007)CrossRefGoogle Scholar
  26. 26.
    Sued, M., Pons, D.: Dynamic Interaction between machine, tool, and substrate in bobbin friction stir welding. Int. J. Manuf. Eng. 2016, 1–14 (2016)Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Mustapha Kaid
    • 1
  • Mokhtar Zemri
    • 1
  • Abdessamad Brahami
    • 1
    Email author
  • Samir Zahaf
    • 2
  1. 1.Laboratoire de Matériau et des Systèmes RéactifsUniversité de Djillali LiabesSidi Bel AbbèsAlgeria
  2. 2.Department of Mechanical EngineeringUniversity of Sciences and TechnologyOranAlgeria

Personalised recommendations