Advertisement

Modeling and parametric optimization of FDM 3D printing process using hybrid techniques for enhancing dimensional preciseness

  • Sandeep Deswal
  • Rajan Narang
  • Deepak ChhabraEmail author
Technical Paper
  • 23 Downloads

Abstract

In this study, significant process parameters (layer thickness, build orientation, infill density and number of contours) are optimized for enhancing the magnitude/dimensional preciseness of fused deposition modeling (FDM) devise units. Hybrid statistical tools such as response surface methodology–genetic algorithm (RSM–GA), artificial neural network (ANN) and artificial neural network-genetic algorithm (ANN-GA) in MAT LAB 16.0 are utilized for training and optimization. An attempt has been made to build up a mathematical model in order to set up an indirect correlation between various FDM process parameters and magnitude preciseness. Sequentially to verify the different developed models and the optimum process parameters setting validation tests were also performed. The results showed that various hybrid statistical tools such as RSM-GA, ANN and ANN-GA are very adequate tools for FDM process parameter optimization. The minimum percentage variation in length = 0.06409%, width = 0.03961% and thickness = 0.85689% can be obtained by using ANN-GA.

Keywords

Response surface methodology (RSM) Artificial neural network (ANN) Genetic algorithm (GA) Fused deposition modeling (FDM) Process parameters 

Notes

References

  1. 1.
    Yan, X., Gu, P.: A review of rapid prototyping technologies and systems. Comput. Aided Des. 4, 307–316 (1996)CrossRefGoogle Scholar
  2. 2.
    Lee, B.H., Abdullah, J., Khan, Z.A.: Optimization of rapid prototyping parameters for production of flexible ABS object. J. Mater. Process. Technol. 169, 54–61 (2005)CrossRefGoogle Scholar
  3. 3.
    Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Experimental investigation of time dependent mechanical properties of PC-ABS prototypes processed by FDM additive manufacturing process. Mater. Lett. 193, 58–62 (2017)CrossRefGoogle Scholar
  4. 4.
    Khodaygan, S., Golmohammadi, A.H.: Multi-criteria optimization of the part build orientation (PBO) through a combinedmeta-modeling/NSGAII/TOPSISmethod for additive manufacturing processes. Int. J. Interact. Des. Manuf. 12, 1071–1085 (2017)CrossRefGoogle Scholar
  5. 5.
    Rayegani, F., Onwubolu, G.: Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int. J. Adv. Manuf. Technol. 73, 509–519 (2014)CrossRefGoogle Scholar
  6. 6.
    Nidagundi, V.B., Keshavamurthy, R., Prakash, C.P.S.: Studies on parametric optimization for fused deposition modelling. Process. Materi. Today Proc. 2, 1691–1699 (2015)CrossRefGoogle Scholar
  7. 7.
    Alafaghani, A., Qattawi A., Alrawi B., Guzman, A.: Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. In: North American Manufacturing Research Conference, LA, USA, vol. 10, pp. 791–803 (2017)Google Scholar
  8. 8.
    Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Appl. Math. Model. 40, 10052–10073 (2016)CrossRefGoogle Scholar
  9. 9.
    Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Improving magnitude preciseness of fused deposition modelling processed part using grey Taguchi method. Mater. Des. 30, 4243–4252 (2009)CrossRefGoogle Scholar
  10. 10.
    Lieneke, T., Denzer, V., Adam, G.A.O., Zimmer, D.: Magnitude tolerances for additive manufacturing: experimental investigation for fused deposition modeling. Procedia CIRP 43, 286–291 (2016)CrossRefGoogle Scholar
  11. 11.
    Sahu, R.K., Mahapatra, S.S., Sood, A.K.: A study on magnitude preciseness of fused deposition modeling (FDM) processed parts using fuzzy logic. J. Manuf. Sci. Prod. 13(3), 183–197 (2013)Google Scholar
  12. 12.
    Equbal, A., Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Prediction of magnitude preciseness in fused deposition modelling: a fuzzy logic approach. Int. J. Product. Qual. Manag. 7, 22–43 (2011)CrossRefGoogle Scholar
  13. 13.
    Chou, K., Zhang, Y.: A parametric study of part distortion in fused deposition modeling using three magnitude element analysis. J. Eng. Manuf. 222(B), 959–967 (2008)Google Scholar
  14. 14.
    Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv. Manuf. 3, 42–53 (2015)CrossRefGoogle Scholar
  15. 15.
    Wang, C.C., Lin, T., Hu, S.: Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis. Rapid Prototyp. J. 13, 304–315 (2007)CrossRefGoogle Scholar
  16. 16.
    Kim, G.D., Oh, Y.T.: A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2, 201–215 (2008)CrossRefGoogle Scholar
  17. 17.
    Ordaz-Hernandez, K., Fischer, X., Bennis, F.: Granular modeling for virtual prototyping in interactive design. Virtual Phys. Prototyp. 2(2), 111–126 (2007)CrossRefGoogle Scholar
  18. 18.
    Nadeau, J.P., Fischer, X.: Research in interactive design: virtual, interactive and integrated product design and manufacturing for industrial innovation. Springer, Berlin (2011)Google Scholar
  19. 19.
    Davorin, Kramar, Djordje, Cica, Branislav, Sredanovic, Janez, Kopa: Design of fuzzy expert system for predicting of surface roughness in high-pressure jet assisted turning using bioinspired algorithms. Artif. Intell. Eng. Des. Anal. Manuf. 30, 96–106 (2016)CrossRefGoogle Scholar
  20. 20.
    Singh, P.K., Jain, S.C., Jain, P.K.: Comparative study of genetic algorithm and simulated annealing for optimal tolerance design formulated with discrete and continuous variables. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 10, 735–758 (2005)CrossRefGoogle Scholar
  21. 21.
    Singh, P.K., Jain, S.C., Jain, P.K.: A genetic algorithm based solution to optimum tolerance synthesis of mechanical assemblies with alternate manufacturing processes—benchmarking with the exhaustive search method using the Lagrange multiplier. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 7, 765–778 (2004)CrossRefGoogle Scholar
  22. 22.
    Rojek, I.: Technological process planning by the use of neural networks. Artif. Intell. Eng. Des. Anal. Manuf. 31, 1–15 (2017)CrossRefGoogle Scholar
  23. 23.
    Christiyan, K.G.J., Chandrasekhar, U., Venkateswarlu, K.: A study on the influence of process parameters on the mechanical properties of 3D printed ABS composite. IOP Conf. Ser. Mater. Sci. Eng. 114, 012109 (2016).  https://doi.org/10.1088/1757-899X/114/1/012109 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, UIETMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations