Advanced roll powder sintering additive manufacturing technology

Original Paper
  • 25 Downloads

Abstract

This paper is about the great modification of Roll Powder Sintering (RPS) additive manufacturing technology and possibility of definition a point’s location in 3D space within a single value by spiral coordinate system. A new algorithm of sequence manufacturing is shorter than previous one and provides higher performance of RPS machine. Proposed methods significantly increase quality, precision and safety of the objects manufacturing with RPS. The new designed RPS device compared with basic and enhanced variants. The described results show the unique potential of the RPS for the fourth technical revolution.

Keywords

High performance 3D printing High precision 3D printing Inexpensive 3D printing 

Notes

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the author.

References

  1. 1.
    Tomlin, M., Meyer, J.: Topology optimization of an additive layer manufactured (ALM) aerospace part. In: The \(7^{{\rm th}}\) Altair CAE Technology Conference, pp. 1–9 (2011)Google Scholar
  2. 2.
    Emmelmann, C., Sander, P., Kranz, J., Wycisk, E.: Laser additive manufacturing and bionics: redefining lightweight design. Phys. Procedia 12A, 364–368 (2011)CrossRefGoogle Scholar
  3. 3.
    Vilanova, J., Romera, P., Lasagni, F., Zorrilla, A., Perinã’n, A.: Additive layer manufacturing for launcher’s applications. In: Proceedings \(13^{{\rm th}}\) European Conference on Spacecraft Structures, Materials. (2014)Google Scholar
  4. 4.
    Shulunov, V.R.: A high performance, high precision, low cost rapid prototyping and manufacturing technology. Int. J. Autom. Smart Technol. (2014).  https://doi.org/10.5875/ausmt.v4i3.718 Google Scholar
  5. 5.
    Shulunov, V.R.: Several advantages of the ultra high-precision additive manufacturing technology. Int. J. Adv. Manuf. Technol. (2015).  https://doi.org/10.1007/s00170-015-7533-0 Google Scholar
  6. 6.
    Shulunov, V.R.: A roll powder sintering additive manufacturing technology. Appl. Mech. Mater. 789–790, 1210–1214 (2015)Google Scholar
  7. 7.
    Shulunov, V.R.: The device manufacturing objects by roll powder sintering [Ustrojstvo izgotovlenija izdelij rulonnym poroshkovym spekaniem]. Patent RF, no. 2601836Google Scholar
  8. 8.
    Shulunov, V.R.: The method manufacturing objects by Roll Powder Sintering [Sposob izgotovlenija izdelij rulonnym poroshkovym spekaniem]. Patent RF, no. 2609911Google Scholar
  9. 9.
    Shulunov, V.R.: Enhanced roll powder sintering additive manufacturing technology. Int. J. Autom. Smart Technol. (2018).  https://doi.org/10.5875/ausmt.v8i1.1597 Google Scholar
  10. 10.
    Okazaki, Y., Mishima, N., Ashida, K.: Microfactory and micro machine tool. In: The 1st Korea–Japan Conference on Positioning Technology Daejeon, Korea (2002)Google Scholar
  11. 11.
    Chern, G.L., Renn, J.C.: Development of a novel micro-punching machine using proportional solenoid. J. Chin. Soc. Mech. Eng. 25, 89–93 (2004)Google Scholar
  12. 12.
    Chern, G.L., Renn, J.C.: Development of a novel micro-punching machine using proportional solenoid. J. Mater. Process. Technol. 25, 89–93 (2004)Google Scholar
  13. 13.
    Okazaki, Y., Mishima, N., Ashida, K.: Microfactory concept, history and developments. J. Manuf. Sci. Eng. 126(4), 837–844 (2004).  https://doi.org/10.1115/1.1823491 CrossRefGoogle Scholar
  14. 14.
    Byung, Y.J., Rhim, S.H., Oh, S.L.: Micro-hole fabrication by mechanical punching process. J. Mater. Process. Technol. 170, 593–601 (2005)CrossRefGoogle Scholar
  15. 15.
    Chern, G.L., Chuang, Y.: Study on vibration—EDM and mass punching of micro holes. J. Mater. Process. Technol. 180, 151–160 (2006)CrossRefGoogle Scholar
  16. 16.
    Qin, Y.: Forming-tool design innovation and intelligent tool structure/system concepts. Int. J. Mach. Tools Manuf. 46(11), 1253–1260 (2006).  https://doi.org/10.1016/j.ijmachtools.2006.01.013 CrossRefGoogle Scholar
  17. 17.
    Qin, Y., et al.: Development of a new machine system for the forming of micro-sheet-products. Int. J. Mater. Form. 1, 475–478 (2008).  https://doi.org/10.1007/s12289-008-0098-9 CrossRefGoogle Scholar
  18. 18.
    Sivanandan, K., et al.: Fabrication and transverse piezoelectric characteristics of PZT thick-film actuators on alumina substrates. Sens. Actuators A Phys. 148(1), 134–137 (2008)CrossRefGoogle Scholar
  19. 19.
    Razali, A., Qin, Y.: A review on micro-manufacturing, micro-forming and their key issues. Procedia Eng. 53, 665–672 (2013).  https://doi.org/10.1016/j.proeng.2013.02.086 CrossRefGoogle Scholar
  20. 20.
    Shulunov, V.R.: Transformation of 3D object into flat ribbon for RPS additive manufacturing technology. Rapid Prototyp. J. 23(2) (2017).  https://doi.org/10.1108/RPJ-11-2015-0164. ISSN: 1355-2546
  21. 21.
    Shulunov, V.R.: Comparison of algorithms for converting 3D objects into rolls, using a spiral coordinate system. Virtual Phys. Prototyp. 12(3), 249–260 (2017).  https://doi.org/10.1080/17452759.2017.1325132 CrossRefGoogle Scholar
  22. 22.
    Shulunov, V.R.: Algorithm for converting 3D objects into rolls using spiral coordinate system. Virtual Phys. Prototyp. 11(2), 91–97 (2016).  https://doi.org/10.1080/17452759.2016.1175360 CrossRefGoogle Scholar
  23. 23.
    Shulunov, V.R., Esheeva, I.R.: Accelerated algorithm for solids of revolution converting into ribbon by spiral coordinate system. Int. J. Intell. Eng. Syst. 10(3), 117–125 (2017).  https://doi.org/10.22266/ijies2017.0630.21 CrossRefGoogle Scholar
  24. 24.
    Shulunov, V.R., Esheeva, I.R.: A linear algorithm for conformal 3D-to-flatness coordinates conversion. Virtual Phys. Prototyp. 12(1), 85–94 (2017).  https://doi.org/10.1080/17452759.2016.1276820 CrossRefGoogle Scholar
  25. 25.
    Shulunov, V.R.: The program spiral converting parallel similar objects into a linear sequence [Programma spiral’nogo preobrazovaniya parallel’no podobnykh ob”ektov v linejnuyu posledovatel’nost’]. Certificate of state registration of computer programs No. 2016613199(RU), 21.12.2015Google Scholar
  26. 26.
    Shulunov, V.R.: Linear spiral convertor for 3D objects into a ribbon [Linejno spiral’nj convertor slojov 3D ob”ektov v lentu]. Certificate of state registration of computer programs No. 2017614132(RU), 06.04.2017Google Scholar
  27. 27.
    Shulunov, V.R.: The program spiral converting solids of revolution into a linear sequence [Programma spiral’nogo preobrazovaniya tel vraschenia v linejnuyu posledovatel’-nost’]. Certificate of state registration of computer programs No. 2017614186(RU), 07.04.2017Google Scholar
  28. 28.
    Belyaev, E.S., Maltsev, I.M., Sorokin, V.K.: The technology of rolling and sintering metal powders and nets. N.Novgorod: NSTU. 28 p. UDC 621.762: 621.77.04 (2015)Google Scholar
  29. 29.
    Lu, X., Yang, S., Evans, J.R.G.: Ultrasound-assisted microfeeding of fine powders. Particuology 6, 2–8 (2008). Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.  https://doi.org/10.1016/j.cpart.2007.10.007

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of ScienceUlan-UdeRussia

Personalised recommendations