Advertisement

Prototyping adaptive systems in smart environments using virtual reality

  • Francesca GullàEmail author
  • Roberto Menghi
  • Alessandra Papetti
  • Marina Carulli
  • Monica Bordegoni
  • Andrea Gaggioli
  • Michele Germani
Original Paper

Abstract

Smart environment is a key challenge for current ICT research: it is one of the solutions that can enhance people’s quality of life and enable users with impairment to live independently. Over the years, scientific research has proposed several solutions to help and improve the capabilities of its occupants, but they are often developed for a specific context (e.g. particular disease or impairment). These systems do not adapt to the real needs of users with different profiles, and neglect that the user’s requirements may evolve over time. This research work aims to develop a new adaptive smart system able to support users (with and without disabilities) in performing daily tasks by recognizing their preferences and actions and adapting the system feedback consequently. With the aim to develop an easy, efficient and usable adaptive smart system, the final users have been involved in the whole design and development process. The system was validated through a virtual reality system allowing the user interaction evaluation and helping the usability improvement.

Keywords

Smart environment Adaptive and adaptable user interface Virtual reality system Bayesian network ICT User-centered design 

Notes

Acknowledgements

The present research study was partially funded by the project “D4All: Design for all” (CTN01_00128_297089), by the Italian Minister of University and Research, under the National Cluster Ambient Assisting Living Technologies (TAV).

References

  1. 1.
    Cook, D., Das, S.K.: Smart Environments: Technology, Protocols and Applications, vol. 43. Wiley, Hoboken (2004)Google Scholar
  2. 2.
    World Health Organization: World Report on Disability. World Health Organization, Geneva (2011)Google Scholar
  3. 3.
    World Health Organization: Global Health and Aging. World Health Organization, Geneva (2011)Google Scholar
  4. 4.
    Plan, A.: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. European Commission, Brussels (2011)Google Scholar
  5. 5.
    Van den Broek, G., Cavallo, F., Wehrmann, C. (eds.): AALIANCE Ambient Assisted Living Roadmap, vol. 6. IOS Press, Amsterdam (2010)Google Scholar
  6. 6.
    Huch, M., Kameas, A., Maitland, J., McCullagh, P., Roberts, J., Sixsmith, A., Wichert, R.: Handbook of ambient assisted living. In: Augusto, J.C. (ed.). IOS Press, Amsterdam (2012)Google Scholar
  7. 7.
    Gullà, F., Ceccacci, S., Menghi, R., Germani, M.: An adaptive smart system to foster disabled and elderly people in kitchen-related task. In: Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, p. 27. ACM (2016)Google Scholar
  8. 8.
    Chaminda, H.T., Klyuev, V., Naruse, K.: A smart reminder system for complex human activities. In: 14th International Conference on Advanced Communication Technology (ICACT), 2012, pp. 235–240. IEEE (2012)Google Scholar
  9. 9.
    Sponselee, A.A.G.: Acceptance and Effectiveness of Telecare Services from the End-User Perspective. Eindhoven University of Technology, Eindhoven (2013)Google Scholar
  10. 10.
    DIS, I.: 9241-210:2010. Ergonomics of Human System Interaction-Part 210: Human-Centred Design for Interactive Systems. International Standardization Organization (ISO), Geneva (2009)Google Scholar
  11. 11.
    Jiménez-Mixco, V., Villalar González, J.L., Arca, A., Cabrera-Umpierrez, M.F., Arredondo, M.T., Manchado, P., García-Robledo, M.: Application of virtual reality technologies in rapid development and assessment of ambient assisted living environments. In: Proceedings of the 1st ACM SIGMM International Workshop on Media Studies and Implementations that Help Improving Access to Disabled Users, pp. 7–12. ACM (2009)Google Scholar
  12. 12.
    Hall, T.W., Navvab, M., Maslowski, E., Petty, S.: Virtual reality as a surrogate sensory environment. In: Advances in Robotics and Virtual Reality, pp. 251–273. Springer, Berlin (2012)Google Scholar
  13. 13.
    Rothrock, L., Koubek, R., Fuchs, F., Haas, M., Salvendy, G.: Review and reappraisal of adaptive interfaces: toward biologically inspired paradigms. Theor. Issues Ergon. Sci. 3(1), 47–84 (2002)Google Scholar
  14. 14.
    Benyon, D., Murray, D.: Applying user modeling to human–computer interaction design. Artif. Intell. Rev. 7(3), 199–225 (1993)Google Scholar
  15. 15.
    Letsu-Dake, E., Ntuen, C.A.: A case study of experimental evaluation of adaptive interfaces. Int. J. Ind. Ergon. 40(1), 34–40 (2010)Google Scholar
  16. 16.
    Grundy, J., Hosking, J.: Developing adaptable user interfaces for component-based systems. Interact. Comput. 14(3), 175–194 (2002)Google Scholar
  17. 17.
    Schneider-Hufschmidt, M., Malinowski, U., Kuhme, T.: Adaptive User Interfaces: Principles and Practice. Elsevier Science Inc., Amsterdam (1993)Google Scholar
  18. 18.
    Shneiderman, B., Maes, P.: Direct Manipulation vs. Interface Agents. Interactions 4(6), 42–61 (1997)Google Scholar
  19. 19.
    Langley, P.: User modeling in adaptive interface. In: UM99 User Modeling, pp. 357–370. Springer, Vienna (1999)Google Scholar
  20. 20.
    Fischer, G.: User modeling in human–computer interaction. User Model. User Adapt. Interact. 11(1), 65–86 (2001)zbMATHGoogle Scholar
  21. 21.
    Ghédira, C., Maret, P., Fayn, J., Rubel, P.: Adaptive user interface customization through browsing knowledge capitalization. Int. J. Med. Inform. 68(1), 219–228 (2002)Google Scholar
  22. 22.
    Bental, D., Cawsey, A., Pearson, J., Jones, R.: Adapting web-based information to the needs of patients with cancer. In: Adaptive Hypermedia and Adaptive Web-Based Systems, pp. 27–37. Springer, Berlin (2000)Google Scholar
  23. 23.
    Shakshuki, E.M., Reid, M., Sheltami, T.R.: An adaptive user interface in healthcare. Procedia Comput. Sci. 56, 49–58 (2015)Google Scholar
  24. 24.
    Vasilyeva, E., Pechenizkiy, M., Puuronen, S.: Towards the framework of adaptive user interfaces for eHealth. In: Proceedings of 18th IEEE Symposium on Computer-Based Medical Systems, 2005, pp. 139–144. IEEE (2005)Google Scholar
  25. 25.
    Song, I.J., Cho, S.B.: Bayesian and behavior networks for context-adaptive user interface in a ubiquitous home environment. Expert Syst. Appl. 40(5), 1827–1838 (2013)Google Scholar
  26. 26.
    Namgoong, H., Sohn, J.C., Cho, Y.J., Chung, Y.K.: An adaptive user interface in smart environment exploiting semantic descriptions. In: IEEE 10th International Symposium on Consumer Electronics, 2006, ISCE’06, pp. 1–6. IEEE (2006)Google Scholar
  27. 27.
    Yen, G.G., Acay, D.: Adaptive user interfaces in complex supervisory tasks. ISA Trans. 48(2), 196–205 (2009)Google Scholar
  28. 28.
    El-Bakry, H.M., Riad, A.M., Abu-Elsoud, M., Mohamed, S., Hassan, A.E., Kandel, M.S., Mastorakis, N.: Adaptive user interface for web applications. In: Recent Advances in Business Administration: Proceedings of the 4th WSEAS International Conference on Business Administration (ICBA’10), pp. 20–22 (2010)Google Scholar
  29. 29.
    Rebai, R., Maalej, M.A., Mahfoudhi, A., Abid, M. : Building and evaluating an adaptive user interface using a Bayesian network approach. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 14(7), 548–565 (2016)Google Scholar
  30. 30.
    Viano, G., Parodi, A., Alty, J., Khalil, C., Angulo, I., Biglino, D., Lachaud, P.: Adaptive user interface for process control based on multi-agent approach. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 201–204. ACM (2000)Google Scholar
  31. 31.
    Bongartz, S., Jin, Y., Paternò, F., Rett, J., Santoro, C., Spano, L.: Adaptive user interfaces for smart environments with the support of model-based languages. Ambient Intell. 33–48 (2012)Google Scholar
  32. 32.
    Mitrovic, N., Mena, E.: Adaptive user interface for mobile devices. Lect. Notes Comput. Sci. 2545, 29–43 (2002)zbMATHGoogle Scholar
  33. 33.
    Nivethika, M., Vithiya, I., Anntharshika, S., Deegalla, S.: Personalized and adaptive user interface framework for mobile application. In: 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1913–1918. IEEE (2013)Google Scholar
  34. 34.
    Wang, X., Hua, Q.Y., Zou, F., Guo, L.: An adaptive user interface model for mobile devices based on perceptual control theory. In: 5th IEEE International Conference on Software Engineering and Service Science (ICSESS), 2014, pp. 908–911. IEEE (2014)Google Scholar
  35. 35.
    Park, J., Han, S.H., Park, Y.S., Cho, Y.: Adaptable versus adaptive menus on the desktop: performance and user satisfaction. Int. J. Ind. Ergon. 37(8), 675–684 (2007)Google Scholar
  36. 36.
    Park, J., Han, S.H.: Complementary menus: combining adaptable and adaptive approaches for menu interface. Int. J. Ind. Ergon. 41(3), 305–316 (2011)Google Scholar
  37. 37.
    Plessas, A., Stefanis, V., Komninos, A., Garofalakis, J.: Field evaluation of context aware adaptive interfaces for efficient mobile contact retrieval. Pervasive Mob. Comput. 35, 51–64 (2017)Google Scholar
  38. 38.
    Brusilovsky, P., Eklund, J.: A study of user model based link annotation in educational hypermedia. J. Univers. Comput. Sci. 4(4), 429–448 (1998)Google Scholar
  39. 39.
    Brusilovsky, P., Pesin, L.: Adaptive navigation support in educational hypermedia: an evaluation of the ISIS-Tutor. CIT. J. Comput. Inf. Technol. 6(1), 27–38 (1998)Google Scholar
  40. 40.
    Greenberg, S., Witten, I.H.: Adaptive personalized interfaces—a question of viability. Behav. Inf. Technol. 4(1), 31–45 (1985)Google Scholar
  41. 41.
    Liu, J., Wong, C.K., Hui, K.K.: An adaptive user interface based on personalized learning. IEEE Intell. Syst. 18(2), 52–57 (2003)Google Scholar
  42. 42.
    Findlater, L., McGrenere, J.: A comparison of static, adaptive, and adaptable menus. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 89–96. ACM (2004)Google Scholar
  43. 43.
    Paramythis, A., Totter, A., Stephanidis, C.: A modular approach to the evaluation of adaptive user interfaces. In: Empirical Evaluation of Adaptive Systems. Proceedings of Workshop at the 8th International Conference on User Modeling, UM2001, pp. 9–24 (2001)Google Scholar
  44. 44.
    Gajos, K.Z., Czerwinski, M., Tan, D.S., Weld, D.S.: Exploring the design space for adaptive graphical user interfaces. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 201–208. ACM (2006)Google Scholar
  45. 45.
    Zudilova-Seinstra, E.: On the role of individual human abilities in the design of adaptive user interfaces for scientific problem solving environments. Knowl. Inf. Syst. 13(2), 243–270 (2007)Google Scholar
  46. 46.
    Gajos, K.Z., Everitt, K., Tan, D.S., Czerwinski, M., Weld, D.S.: Predictability and accuracy in adaptive user interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1271–1274. ACM (2008)Google Scholar
  47. 47.
    Lin, Y., Breugelmans, J., Iversen, M., Schmidt, D.: An adaptive interface design (AID) for enhanced computer accessibility and rehabilitation. Int. J. Hum. Comput. Stud. 98, 14–23 (2017)Google Scholar
  48. 48.
    Vaughan, N., Gabrys, B., Dubey, V.N.: An overview of self-adaptive technologies within virtual reality training. Comput. Sci. Rev. 22, 65–87 (2016)MathSciNetGoogle Scholar
  49. 49.
    Huang, X., Naghdy, F., Naghdy, G., Du, H., Todd, C.: The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study. J. Stroke Cere Brovasc. Dis. 27, 221–228 (2017)Google Scholar
  50. 50.
    Matsas, E., Vosniakos, G.C., Batras, D.: Prototyping proactive and adaptive techniques for human–robot collaboration in manufacturing using virtual reality. Robot. Comput. Integr. Manuf. 50, 168–180 (2017)Google Scholar
  51. 51.
    Maurya, S., Arai, K., Moriya, K., Arrighi, P.A., Mougenot, C.: A mixed reality tool for end-users participation in early creative design tasks. Int. J. Interact. Des. Manuf. (IJIDeM) 1–20 (2018)Google Scholar
  52. 52.
    Cooper, A.: The inmates are running the asylum: why high-tech products drive us crazy and how to restore the sanity. SAMS, Indianapolis (1999)Google Scholar
  53. 53.
    Gulliksen, J., Göransson, B., Boivie, I., Blomkvist, S., Persson, J., Cajander, Å.: Key principles for user-centred systems design. Behav. Inf. Technol. 22(6), 397–409 (2003)Google Scholar
  54. 54.
    Gullà, F., Ceccacci, S., Menghi, R., Cavalieri, L., Germani, M.: Adaptive interface for smart home: a new design approach. In: Italian Forum of Ambient Assisted Living, pp. 107–115. Springer, Cham (2016)Google Scholar
  55. 55.
    Brewer, J., Dardailler, D.: World Wide Web Consortium (W3C) Web Accessibility Initiative (WAI). World Wide Web Consortium, Cambridge (2000)Google Scholar
  56. 56.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (2014)zbMATHGoogle Scholar
  57. 57.
    Nyberg, J.B., Marcot, B.G., Sulyma, R.: Using Bayesian belief networks in adaptive management. Can. J. For. Res. 36(12), 3104–3116 (2006)Google Scholar
  58. 58.
    Gullà, F., Cavalieri, L., Ceccacci, S., Germani, M.: A BBN-based method to manage adaptive behavior of a smart user interface. Procedia CIRP 50, 535–540 (2016)Google Scholar
  59. 59.
    W3C., W. C.: http://www.w3.org/TR/WCAG20/ (2017). Accessed 24 May 2017
  60. 60.
    Wang, G.: Definition and review of virtual prototyping. J. Comput. Inf. Sci. Eng. 2(3), 232–236 (2002)Google Scholar
  61. 61.
    Carulli, M., Bordegoni, M., Cugini, U.: An approach for capturing the voice of the customer based on virtual prototyping. J. Intell. Manuf. (2012).  https://doi.org/10.1007/s10845-012-0662-5 Google Scholar
  62. 62.
    Caruso, G., Re, G.M., Carulli, M., Bordegoni, M.: Novel augmented reality system for contract design sector. Comput. Aided Des. Appl. 11(4), 389–398 (2014).  https://doi.org/10.1080/16864360.2014.881181 Google Scholar
  63. 63.
    Bordegoni, M., Carulli, M.: Evaluating industrial products in an innovative visual-olfactory environment. J. Comput. Inf. Sci. Eng. 16(3), 030904 (2016).  https://doi.org/10.1115/1.4033229 Google Scholar
  64. 64.
    Sauro, J.: A practical guide to the system usability scale: background, benchmarks & best practices. Measuring Usability LLC, Denver (2011)Google Scholar
  65. 65.
    Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 249–256. ACM (1990)Google Scholar
  66. 66.
    Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection Methods. Wiley, New York (1994)Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Francesca Gullà
    • 1
    Email author
  • Roberto Menghi
    • 1
  • Alessandra Papetti
    • 1
  • Marina Carulli
    • 2
  • Monica Bordegoni
    • 2
  • Andrea Gaggioli
    • 3
  • Michele Germani
    • 1
  1. 1.Università Politecnica delle MarcheAnconaItaly
  2. 2.Politecnico di MilanoMilanItaly
  3. 3.Università Cattolica di MilanoMilanItaly

Personalised recommendations