Antistatic properties of clearcoats by the use of special additives

  • Carina Deschamps
  • Neil Simpson
  • Michael DornbuschEmail author


Electrostatic discharge and dust attraction are everyday life phenomenon, which are undesirable in most cases. In coatings, antistatic additives can solve this issue by reducing the surface resistance of surfaces. By way of formulation, antistatic coatings might prevent electrostatic discharge and dust attraction. In this work, we evaluated different substances to investigate and understand their ability to create an antistatic effect, specifically in a UV clearcoat. We have developed a method to evaluate the suitability of antistatic additives by investigating their location within the coating matrix by FTIR, versus the location of the coating resistance and resultant coating performance. We compared an array of different chemistries used to impart antistatic effects, from classic quaternary salts to polymeric materials and pigments, to better understand how they perform in a coating and to understand any benefits or issues. All additives helped to reduce surface resistance and therefore improve the potential for antistatic performance. We found the most powerful effects on reduced resistance from the ionic liquid and conducting pigment, but they were unable to target the surface where the effect was needed for an antistatic behavior. Additives at the surface gave the strongest effect, but they mostly relied upon increasing hydrophilicity and as a result reduced coating hardness and tended to leach from the coating. Modifying the quats (quaternary ammonium cationic materials) with PDMS (polydimethylsiloxane) gave the strongest surface affinity, but we believe this diluted the effect of antistatic behavior versus lower molecular analogues due to the lower molar concentration of active groups. We believe our work could be used by formulators to better design additives that find the correct location within a coating to avoid waste and side effects, and to address the issue of permanence through crosslinkable modification.


Antistatic UV coating IR spectroscopy Inert curing Ammonium salts 



  1. 1.
    Berndt H, Elektrostatik-Ursachen, Wirkungen, Schutzmaßnahmen, Messungen, Prüfung, Normung. 3. Berlin/Offenbach: VDE Verlag, 2009. pp. 17–30. Vol. 71 VDE Schriftenreihen.Google Scholar
  2. 2.
    Eichfelder A et al., Ionic Liquids as Conductivity Promoters in Coatings Applications. European Technical Coatings Congress 2014 Cologne: BASF (2014)Google Scholar
  3. 3.
    Lemer, A, “A New Additive for Electrostatic Discharge Control in Foams and Elastomers.” J. Cell. Plast., 21 (1) 31–34 (1985)CrossRefGoogle Scholar
  4. 4.
    US Patent No. 5300575Google Scholar
  5. 5.
    US Patent No. 4790856 (1988)Google Scholar
  6. 6.
    US Patent No. US3936537 (1976)Google Scholar
  7. 7.
    US Patent No. 9777181 (2014)Google Scholar
  8. 8.
    US Patent No. 9545042 (2014)Google Scholar
  9. 9.
    IN Patent No. 201711035225A (2017)Google Scholar
  10. 10.
    Markarian, J, “New Developments in Antistatic and Conductive Additives.” Plast. Addit. Compd., 10 (5) 22–25 (2008)CrossRefGoogle Scholar
  11. 11.
    Eisermann, D, “Antistatika.” Kunststoffe Online-Archiv, 89 7 (1999)Google Scholar
  12. 12.
    Frost B, Konzmann H, Brand F, Antistatische Farben. FARBE UND LACK - Dossier Bautenfarben. Vincentz Network, Hannover. 1, pp. 25–28 (2014).Google Scholar
  13. 13.
    Keller A et al., Antistatische Lacke für Parkettfußböden durch ionische Flüssigkeiten. Fabrik der Zukunft. Schwaz, Österreich: Bundesministerium für Verkehr, Innovation und Technologie (2008).Google Scholar
  14. 14.
    Fachgruppe Dekorative Schichtstoffplatten. Elektrostatische Ableitfähigkeit von Dekorativen Schichtstoffen (HPL). Technisches Merkblatt (2008).Google Scholar
  15. 15.
    Roessler, A, Schottenberger, H, “Antistatic Coatings for Wood-Floorings by Imidazolium Salt-Based Ionic Liquids.” Prog. Org. Coat., 77 (3) 579–582 (2014)CrossRefGoogle Scholar
  16. 16.
    Wouters, MEL, Wolfs, DP, van der Linde, MC, Hovens, JHP, Tinnemans, AHA, “Transparent UV Curable Antistatic Hybrid Coatings on Polycarbonate Prepared by the Sol–Gel Method.” Prog. Org. Coat., 51 312–320 (2004)CrossRefGoogle Scholar
  17. 17.
    Tan, CLC, Gao, S, Wee, BS, “Adhesion of Dust Particles to Common Indoor Surfaces in an Air-Conditioned Environment.” Aerosol Sci. Technol., 48 541–551 (2014)CrossRefGoogle Scholar
  18. 18.
    Castellino, M, Rovere, M, Shahzad, MI, Tagliaferro, A, “Conductivity in Carbon Nanotube Polymer Composites: A Comparison Between Model and Experiment.” Compos. Part A, 87 237–242 (2016)CrossRefGoogle Scholar
  19. 19.
    Gächter, R, Müller, H, Taschenbuch der Kunststoffadditive, pp. 780–805. Carl Hanser Verlag, München (1990)Google Scholar
  20. 20.
    Hong, JW, Kim, HK, J. Appl. Polym. Sci., 84 132–137 (2002)CrossRefGoogle Scholar
  21. 21.
    Wasserscheid P, Ionic Liquids in Synthesis. 2. Wiley-VCH, Weinheim. Vol. 1 (2007).Google Scholar
  22. 22.
    RÖMPP, Thieme Verlag, Band 5, 1992, Quartäre Ammonium-Verbindungen. Google Scholar
  23. 23.
    Azim, S, Satheesh, A, Ramu, KK, Ramu, S, Venkatachari, G, “Studies on Graphite Based Conductive Paint Coatings.” Prog. Org. Coat., 55, 1–4 (2006)CrossRefGoogle Scholar
  24. 24.
    Calahorra, A, Aharoni, D, Dodiuk, H, “Carbon Filled Paints Of Improves Electrical Conductivity.” J. Coat. Technol., 64 814 (1992)Google Scholar
  25. 25.
    Al-Dahoudi, N, Bisht, H, Göbbert, C, Krajewski, T, Aegerter, MA, “Transparent Conducting, Anti-Static and Anti-Static-Anti-Glare Coatings on Plastic Substrates.” Thin Solid Films, 392 299–304 (2001)CrossRefGoogle Scholar
  26. 26.
    S. Nell, Winterthurer Oberflächentag - Functional Materials. presentation. ZHAW, Merck KgaA, Winterthur (2014)Google Scholar
  27. 27.
    Eyerer P, Hirth T, Polymer Engineering - Technologien und Praxis. [ed.] P. Elsner. Springer, Berlin (2008).Google Scholar
  28. 28.
    Blythe AR, Electrical Properties of Polymers. 1. Cambridge University Press, Cambridge (1979)Google Scholar
  29. 29.
    DE102004030674A1Google Scholar
  30. 30.
    EP000001791652B1Google Scholar
  31. 31.
    WO002001039897A3Google Scholar
  32. 32.
    WO002006000349A2Google Scholar
  33. 33.
    Mazloom, J, Ghodsi, FE, Gholami, M, “Fiber-Like Stripe ATO (SnO2:Sb) Nanostructured Thin Films Grown by Sol–Gel Method: Optical, Topographical and Electrical Properties.” J. Alloys Comp., 579 384–393 (2013)CrossRefGoogle Scholar
  34. 34.
    Günzler H, Gremlich H-U IR-Spektroskopie Eine Einführung. 4. Wiley-VCH, Weinheim. pp. 190–240 (2003).Google Scholar
  35. 35.
    Volkmann, Hugo, Handbuch der Infrarot-Spektroskopie, pp. 218–450. Verlag Chemie GmbH, Weinheim (1972)Google Scholar
  36. 36.
    Socrates, G, Infrared and Raman Characteristic Group Frequencies. Wiley, New York (2013)Google Scholar
  37. 37.
    Armelin, E, Oliver, R, Liesa, F, Iribarren, JI, Estrany, F, Aleman, C, “Marine Paint Formulations: Conducting Polymers as Anticorrosive Additives.” Prog. Org. Coat., 59 46–52 (2007)CrossRefGoogle Scholar

Copyright information

© American Coatings Association 2019

Authors and Affiliations

  • Carina Deschamps
    • 1
    • 2
  • Neil Simpson
    • 1
  • Michael Dornbusch
    • 2
    Email author
  1. 1.Borchers GmbHLangenfeldGermany
  2. 2.Department of Chemistry, Institute for Coating and Surface TechnologyNiederrhein University of Applied SciencesKrefeldGermany

Personalised recommendations