Tunable surface chemistry and wettability of octafluorocyclobutane and acrylic acid copolymer combined LDPE substrate by pulsed plasma polymerization

  • I. MuzammilEmail author
  • Y. P. Li
  • X. Y. Li
  • D. K. Dinh
  • M. Imran
  • H. Sattar
  • M. K. Lei


Octafluorocyclobutane and acrylic acid (C4F8-co-AA) are plasma copolymerized onto low-density polyethylene (LDPE) and glass slides under various pulsation periods of radio frequency pulsed plasma. The surface wettability of plasma polymer coating is traditionally considered as a substrate-independent property. The combined effect of ultrathin C4F8-co-AA coatings and LDPE substrate on surface wettability is presented. The high concentration of the carboxylic acid functional groups gives rise to hydrophilicity via lowering duty cycle, and substrate impact gives rise to hydrophobicity for ultrathin coatings. The X-ray photoelectron spectroscopy and coating thickness measurements confirmed that the sudden increase in water contact angle for the lower duty cycle is influenced by the hydrophobic substrate for ultrathin polymer coatings. It is highlighted that the precise control over the surface wettability is attained by tuning the plasma parameters. The substrate-dependent wettability for flat substrate persisted for longer than 8 weeks, which demonstrates wetting stability for ultrathin coatings.


Pulsed plasma polymerization Superhydrophobicity Superhydrophilicity Controllable Wettability Wetting hysteresis 



This work is supported by the projects supported by the National Natural Science Foundation of China under Grant Nos. 51611530706 and 51621064, the National Basic Research Program of China (973 Program) under Grant No. 2015CB057306, the Fundamental Research Funds for the Central Universities under Grant No. DUT16QY17, and the Chinese Government Scholarship under Grant No. 2013GXZE57.

Supplementary material

11998_2019_244_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1961 kb)


  1. 1.
    Yao, X, Song, Y, Jiang, L, “Applications of Bio-inspired Special Wettable Surfaces.” Adv. Mater., 23 719–734 (2011). CrossRefGoogle Scholar
  2. 2.
    Muzammil, I, Dinh, DK, Abbas, Q, Imran, M, Sattar, H, Ahmad, AU, “Controlled Surface Wettability by Plasma Polymer Surface Modification.” Surfaces, 2 349–371 (2019). CrossRefGoogle Scholar
  3. 3.
    Falde, EJ, Yohe, ST, Colson, YL, Grinstaff, MW, “Superhydrophobic Materials for Biomedical Applications.” Biomaterials, 104 87–103 (2016). CrossRefGoogle Scholar
  4. 4.
    Li, XM, Reinhoudt, D, Crego-Calama, M, “What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces.” Chem. Soc. Rev., 36 1350–1368 (2007). CrossRefGoogle Scholar
  5. 5.
    Liu, K, Yao, X, Jiang, L, “Recent Developments in Bio-inspired Special Wettability.” Chem. Soc. Rev., 39 3240–3255 (2010). CrossRefGoogle Scholar
  6. 6.
    Lafuma, A, Quere, D, “Superhydrophobic States.” Nat. Mater., 2 457–460 (2003)CrossRefGoogle Scholar
  7. 7.
    Chow, PK, Singh, E, Viana, BC, Gao, J, Luo, J, Li, J, Lin, Z, Elías, AL, Shi, Y, Wang, Z, Terrones, M, Koratkar, N, “Wetting of Mono and Few-Layered WS2 and MoS2 Films Supported on Si/SiO2 Substrates.” ACS Nano, 9 3023–3031 (2015). CrossRefGoogle Scholar
  8. 8.
    Choi, BK, Lee, IH, Kim, J, Chang, YJ, “Tunable Wetting Property in Growth Mode-Controlled WS2 Thin Films.” Nanoscale Res. Lett., 12 262 (2017). CrossRefGoogle Scholar
  9. 9.
    Li, J, Wei, M, Wang, Y, “Substrate Matters: The Influences of Substrate Layers on the Performances of Thin-film Composite Reverse Osmosis Membranes.” Chin. J. Chem. Eng., 25 1676–1684 (2017). CrossRefGoogle Scholar
  10. 10.
    Shih, C-J, Strano, MS, Blankschtein, D, “Wetting Translucency of Graphene.” Nat. Mater., 12 866–869 (2013). CrossRefGoogle Scholar
  11. 11.
    Muzammil, I, Li, Y, Lei, M, “Tunable Wettability and pH-Responsiveness of Plasma Copolymers of Acrylic Acid and Octafluorocyclobutane.” Plasma Process. Polym., 14 1700053 (2017). CrossRefGoogle Scholar
  12. 12.
    Kim, MS, Khang, G, Lee, HB, “Gradient Polymer Surfaces for Biomedical Applications.” Prog. Polym. Sci., 33 138–164 (2008). CrossRefGoogle Scholar
  13. 13.
    Chan, CM, Ko, TM, Hiraoka, H, “Polymer Surface Modification by Plasmas and Photons.” Surf. Sci. Rep., 24 3–54 (1996)CrossRefGoogle Scholar
  14. 14.
    Muzammil, I, Li, Y, Lei, M, “Cover Picture: Multifunctional Smart Polymer Coatings 10/2017.” Plasma Process. Polym., 14 1770019 (2017). CrossRefGoogle Scholar
  15. 15.
    Siffer, F, Ponche, A, Fioux, P, Schultz, J, Roucoules, V, “A Chemometric Investigation of the Effect of the Process Parameters During Maleic Anhydride Pulsed Plasma Polymerization.” Anal. Chim. Acta, 539 289–299 (2005). CrossRefGoogle Scholar
  16. 16.
    Förch, R, Zhang, Z, Knoll, W, “Soft Plasma Treated Surfaces: Tailoring of Structure and Properties for Biomaterial Applications.” Plasma Process. Polym., 2 351–372 (2005). CrossRefGoogle Scholar
  17. 17.
    Friedrich, J, “Pulsed-Plasma Polymerization.” In: The Plasma Chemistry of Polymer Surfaces, pp. 377–456. Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
  18. 18.
    Muzammil, I, Li, YP, Li, XY, Lei, MK, “Duty Cycle Dependent Chemical Structure and Wettability of RF Pulsed Plasma Copolymers of Acrylic Acid and Octafluorocyclobutane.” Appl. Surf. Sci., 436 411–418 (2018). CrossRefGoogle Scholar
  19. 19.
    Daw, R, O’Leary, T, Kelly, J, Short, RD, Cambray-Deakin, M, Devlin, AJ, Brook, IM, Scutt, A, Kothari, S, “Molecular Engineering of Surfaces by Plasma Copolymerization and Enhanced Cell Attachment and Spreading.” Plasmas Polym., 4 113–132 (1999). CrossRefGoogle Scholar
  20. 20.
    France, RM, Short, RD, Duval, E, Jones, FR, Dawson, RA, MacNeil, S, “Plasma Copolymerization of Allyl Alcohol/1,7-Octadiene: Surface Characterization and Attachment of Human Keratinocytes.” Chem. Mater., 10 1176–1183 (1998). CrossRefGoogle Scholar
  21. 21.
    Friedrich, J, Mix, R, Kühn, G, Retzko, I, Schönhals, A, Unger, W, “Plasma-Based Introduction of Monosort Functional Groups of Different Type and Density onto Polymer Surfaces. Part 2: Pulsed Plasma Polymerization.” Compos. Interfaces, 10 173–223 (2003). CrossRefGoogle Scholar
  22. 22.
    Hirotsu, T, Tagaki, C, Partridge, A, “Plasma Copolymerization of Acrylic Acid with Hexamethyldisilazane.” Plasmas Polym., 7 353–366 (2002). CrossRefGoogle Scholar
  23. 23.
    Bhatt, S, Pulpytel, J, Ceccone, G, Lisboa, P, Rossi, F, Kumar, V, Arefi-Khonsari, F, “Nanostructure Protein Repellant Amphiphilic Copolymer Coatings with Optimized Surface Energy by Inductively Excited Low Pressure Plasma.” Langmuir, 27 14570–14580 (2011). CrossRefGoogle Scholar
  24. 24.
    Chahine, C, Poncin-Epaillard, F, Debarnot, D, “Plasma Copolymerization of Fluorinated and Acrylate Monomers: Kinetics and Chemical Structure Study.” Plasma Process. Polym., 12 493–501 (2015). CrossRefGoogle Scholar
  25. 25.
    Rodriguez-Emmenegger, C, Kylián, O, Houska, M, Brynda, E, Artemenko, A, Kousal, J, Alles, AB, Biederman, H, “Substrate-Independent Approach for the Generation of Functional Protein Resistant Surfaces.” Biomacromolecules, 12 1058–1066 (2011). CrossRefGoogle Scholar
  26. 26.
    Teare, DOH, Schofield, WCE, Roucoules, V, Badyal, JPS, “Substrate-Independent Growth of Micropatterned Polymer Brushes.” Langmuir, 19 2398–2403 (2003). CrossRefGoogle Scholar
  27. 27.
    Voronin, SA, Zelzer, M, Fotea, C, Alexander, MR, Bradley, JW, “Pulsed and Continuous Wave Acrylic Acid Radio Frequency Plasma Deposits: Plasma and Surface Chemistry.” J. Phys. Chem. B, 111 3419–3429 (2007). CrossRefGoogle Scholar
  28. 28.
    Vasilev, K, Michelmore, A, Griesser, HJ, Short, RD, “Substrate Influence on the Initial Growth Phase of Plasma-Deposited Polymer Films.” Chem. Commun., (2009). Google Scholar
  29. 29.
    Chen, RT, Muir, BW, Thomsen, L, Tadich, A, Cowie, BCC, Such, GK, Postma, A, McLean, KM, Caruso, F, “New Insights into the Substrate-Plasma Polymer Interface.” J. Phys. Chem. B, 115 6495–6502 (2011). CrossRefGoogle Scholar
  30. 30.
    Vasilev, K, Michelmore, A, Martinek, P, Chan, J, Sah, V, Griesser, HJ, Short, RD, “Early Stages of Growth of Plasma Polymer Coatings Deposited from Nitrogen- and Oxygen-Containing Monomers.” Plasma Process. Polym., 7 824–835 (2010). CrossRefGoogle Scholar
  31. 31.
    Li, Y, Muir, BW, Easton, CD, Thomsen, L, Nisbet, DR, Forsythe, JS, “A Study of the Initial Film Growth of PEG-Like Plasma Polymer Films via XPS and NEXAFS.” Appl. Surf. Sci., 288 288–294 (2014). CrossRefGoogle Scholar
  32. 32.
    Akhavan, B, Menges, B, Forch, R, “Inhomogeneous Growth of Micrometer Thick Plasma Polymerized Films.” Langmuir, 32 4792–4799 (2016). CrossRefGoogle Scholar
  33. 33.
    Akhavan, B, Wise, SG, Bilek, MMM, “Substrate-Regulated Growth of Plasma-Polymerized Films on Carbide-Forming Metals.” Langmuir, 32 10835–10843 (2016). CrossRefGoogle Scholar
  34. 34.
    Akhavan, B, Jarvis, K, Majewski, P, “Evolution of Hydrophobicity in Plasma Polymerised 1,7-Octadiene Films.” Plasma Process. Polym., 10 1018–1029 (2013). CrossRefGoogle Scholar
  35. 35.
    Lei, MK, Zhu, XM, “Role of Nitrogen in Pitting Corrosion Resistance of a High-Nitrogen Face-Centered-Cubic Phase Formed on Austenitic Stainless Steel.” J. Electrochem. Soc., 152 B291–B295 (2005). CrossRefGoogle Scholar
  36. 36.
    Gray, BF, Pritchard, HO, “208. The Thermal Decomposition of Octadeuterocyclobutane and Octafluorocyclobutane.” J. Chem. Soc., (1956). Google Scholar
  37. 37.
    Labelle, CB, Opila, R, Kornblit, A, “Plasma Deposition of Fluorocarbon Thin Films from c-C4F8 Using Pulsed and Continuous rf Excitation.” J Vac Sci Technol A, 23 190 (2005). CrossRefGoogle Scholar
  38. 38.
    Voronin, SA, Bradley, JW, Fotea, C, Zelzer, M, Alexander, MR, “Characterization of Thin-Film Deposition in a Pulsed Acrylic Acid Polymerizing Discharge.” J Vac Sci Technol A, 25 1093 (2007). CrossRefGoogle Scholar
  39. 39.
    Tolstoy, VP, Chernyshova, IV, Skryshevsky, VA, “Interpretation of IR Spectra of Ultrathin Films.” In: Handbook of Infrared Spectroscopy of Ultrathin Films, pp. 140–306. Wiley, Hoboken, 2003.
  40. 40.
    Schmidt, DL, Brady, RF, Lam, K, Schmidt, DC, Chaudhury, MK, “Contact Angle Hysteresis, Adhesion, and Marine Biofouling.” Langmuir, 20 2830–2836 (2004). CrossRefGoogle Scholar
  41. 41.
    Quéré, D, “Wetting and Roughness.” Annu. Rev. Mater. Res., 38 71–99 (2008). CrossRefGoogle Scholar
  42. 42.
    Li, YP, Li, SY, Shi, W, Lei, MK, “Hydrophobic Over-Recovery During Aging of Polyethylene Modified by Oxygen Capacitively Coupled Radio Frequency Plasma: A New Approach for Stable Superhydrophobic Surface with High Water Adhesion.” Surf. Coat. Technol., 206 4952–4958 (2012). CrossRefGoogle Scholar
  43. 43.
    Rich, SA, Dufour, T, Leroy, P, Nittler, L, Pireaux, JJ, Reniers, F, “Low-Density Polyethylene Films Treated by an Atmospheric Ar–O2 Post-discharge: Functionalization, Etching, Degradation and Partial Recovery of the Native Wettability State.” J. Phys. D Appl. Phys., 47 065203 (2014)CrossRefGoogle Scholar

Copyright information

© American Coatings Association 2019

Authors and Affiliations

  1. 1.Plasma Engineering LaboratoryKorea Institute of Machinery and MaterialsDaejeonRepublic of Korea
  2. 2.Surface Engineering Laboratory, School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  3. 3.School of Physics, Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education)Dalian University of TechnologyDalianChina

Personalised recommendations