Photosensitive ink formulation and inkjet printing on flexible PET substrate
- 69 Downloads
Abstract
Photochromic materials whose color can reversibly change under visible light exposure are good candidates for many applications like photooptical sensors, smart inks and paints, displays or optical storage. Among these materials, inorganic Ag:TiO2 films have been proven to be stable over time and to exhibit multicolor photochromism leading to potential high-performance systems. However, their fabrication processes are often based on laboratory equipment not adapted to industrialization and usually involve thermal treatments not compatible with soft materials, which limit the application range. The present paper proposes an alternative way to produce photochromic Ag:TiO2 films compatible with industrialization and with soft substrates. An aqueous ink, made of a dispersion of TiO2 nanoparticles and silver ions, was formulated from a commercial TiO2 suspension and a silver salt by adding a thickener and a surfactant to satisfy inkjet process requirements. The inkjet printing process was optimized on polyethylene terephthalate substrates to form thin inorganic films after IR annealing. Such a process can be adapted to any kind of substrates, in particular flexible and non-heat-resistant substrates, and can be scaled at the industrial level. The photochromic behavior of the fabricated films was finally assessed successfully after an activation step.
Keywords
Ag:TiO2 thin films Flexible substrate Ink formulation Inkjet printing PhotochromismNotes
Acknowledgments
This work is supported by ANR in the framework of Project PHOTOFLEX No. 12-NANO-0006. This research was made possible thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund). The authors also thank CLYM (www.clym.fr) for access to the Jeol 2010F TEM. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030) and of PolyNat Carnot Institute (Investissements d’Avenir—Grant Agreement No. ANR-16-CARN-0025-01).
References
- 1.Ohko, Y, et al., “Multicolour Photochromism of TiO2 Films Loaded with Silver Nanoparticles.” Nat. Mater., 2 29–31 (2003)CrossRefGoogle Scholar
- 2.Han, R, Zhang, X, Wang, L, Dai, R, Liu, Y, “Size-Dependent Photochromism-Based Holographic Storage of Ag/TiO2 Nanocomposite Film.” Appl. Phys. Lett., 98 221905 (2011)CrossRefGoogle Scholar
- 3.Qiao, Q, et al., “Formation of Holographic Fringes on Photochromic Ag/TiO2 Nanocomposite Films.” Appl. Phys. Lett., 94 074104 (2009)CrossRefGoogle Scholar
- 4.Kazuma, E, Tatsuma, T, “Photoinduced Reversible Changes in Morphology of Plasmonic Ag Nanorods on TiO2 and Application to Versatile Photochromism.” Chem. Commun., 48 1733–1735 (2012)CrossRefGoogle Scholar
- 5.Liu, Z, et al., “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses.” ACS Nano, 11 5031–5040 (2017)CrossRefGoogle Scholar
- 6.Naoi, K, Ohko, Y, Tatsuma, T, “Switchable Rewritability of Ag–TiO2 Nanocomposite Films with Multicolor Photochromism.” Chem Commun, (2005). https://doi.org/10.1039/b416139d Google Scholar
- 7.Crespo-Monteiro, N, et al., “Reversible and Irreversible Laser Microinscription on Silver-Containing Mesoporous Titania Films.” Adv. Mater., 22 3166–3170 (2010)CrossRefGoogle Scholar
- 8.Kawahara, K, Suzuki, K, Ohko, Y, Tatsuma, T, “Electron Transport in Silver-Semiconductor Nanocomposite Films Exhibiting Multicolor Photochromism.” Phys. Chem. Chem. Phys., 7 3851 (2005)CrossRefGoogle Scholar
- 9.Dahmen, C, Sprafke, AN, Dieker, H, Wuttig, M, von Plessen, G, “Optical and Structural Changes of Silver Nanoparticles During Photochromic Transformation.” Appl. Phys. Lett., 88 011923 (2006)CrossRefGoogle Scholar
- 10.Nadar, L, et al., “Multicolor Photochromism of Silver-Containing Mesoporous Films of Amorphous or Anatase TiO2.” J. Nanoparticle Res., 15 2048 (2013)CrossRefGoogle Scholar
- 11.Crespo-Monteiro, N, Destouches, N, Fournel, T, “Updatable Random Texturing of Ag/TiO2 Films for Goods Authentication.” Appl. Phys. Express, 5 075803 (2012)CrossRefGoogle Scholar
- 12.Wang, X, Yu, JC, Ho, C, Mak, AC, “A Robust Three-Dimensional Mesoporous Ag/TiO2 Nanohybrid Film.” Chem. Commun., (2005). https://doi.org/10.1039/b500605h Google Scholar
- 13.Diop, DK, et al., “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates.” Adv. Mater. Interfaces, 2 1500134 (2015)CrossRefGoogle Scholar
- 14.Diop, DaoudaK, et al., “Spectral and Color Changes of Ag/TiO2 Photochromic Films Deposited on Diffusing Paper and Transparent Flexible Plastic Substrates.” Appl. Spectrosc., 71 1271–1279 (2017)CrossRefGoogle Scholar
- 15.Tricot, F, et al., “Photochromic Ag:TiO2 Thin Films on PET Substrate.” RSC Adv, 4 61305–61312 (2014)CrossRefGoogle Scholar
- 16.Tricot, F, et al., “Flexible Photochromic Ag:TiO2 Thin Films Fabricated by Ink-Jet and Flexography Printing Processes.” RSC Adv., 5 84560–84564 (2015)CrossRefGoogle Scholar
- 17.Alberius, PCA, Frindell, KL, Kramer, EJ, Stucky, GD, Chmelka, BF, “General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films.” Chem. Mater., 14 3284–3294 (2002)CrossRefGoogle Scholar
- 18.Crepaldi, EL, et al., “Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2.” J. Am. Chem. Soc., 125 9770–9786 (2003)CrossRefGoogle Scholar
- 19.Yu, JC, Wang, X, Fu, X, “Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films.” Chem. Mater., 16 1523–1530 (2004)CrossRefGoogle Scholar
- 20.Nadar, L. “Surfaces fonctionnalisées à base de nanoparticules métalliques pour l’optique et la photonique”. (Thesis Université Jean Monnet-Saint-Etienne, 2011).Google Scholar
- 21.Wang, J, Li, H, Li, H, Zuo, C, Wang, H, “Thermal Stability and Optimal Photoinduced Hydrophilicity of Mesoporous TiO2 Thin Films.” J. Phys. Chem. C, 116 9517–9525 (2012)CrossRefGoogle Scholar
- 22.Tohge, N, Shinmou, K, Minami, T, “Effects of UV-Irradiation on the Formation of Oxide Thin Films from Chemically Modified Metal-Alkoxides.” J. Sol-Gel Sci. Technol., 2 581–585 (1994)CrossRefGoogle Scholar
- 23.de Galo, J, Soler-Illia, AA, Crepaldi, EduardoL, Grosso, David, Sanchez, Clement, “Block Copolymer-Templated Mesoporous Oxides.” Curr. Opin. Colloid Interface Sci., 8 109–126 (2003)CrossRefGoogle Scholar
- 24.Mozaffari, N, Mohammadi, MR, Faghihi Sani, MA, “Development of Block Copolymer-Templated Crack-Free Mesoporous Anatase-TiO2 Film: Tailoring Sol–Gel and EISA Processing Parameters and Photovoltaic Characteristics.” J. Mater. Sci. Mater. Electron., 26 1543–1553 (2015)CrossRefGoogle Scholar
- 25.Kominami, H, et al., “Novel Synthesis of Microcrystalline Titanium(IV) Oxide Having High Thermal Stability and Ultra-high Photocatalytic Activity: Thermal Decomposition of Titanium(IV) Alkoxide in Organic Solvents.” Catal. Lett., 46 235–240 (1997)CrossRefGoogle Scholar
- 26.Kipphan, H, et al., Handbook of Print Media, 140. Springer, Berlin (2000)Google Scholar
- 27.Briggs, D, Rance, DG, Kendall, CR, Blythe, AR, “Surface Modification of Poly(ethylene terephthalate) by Electrical Discharge Treatment.” Polymer, 21 895–900 (1980)CrossRefGoogle Scholar
- 28.Jang, D, Kim, D, Moon, J, “Influence of Fluid Physical Properties on Ink-Jet Printability.” Langmuir, 25 2629–2635 (2009)CrossRefGoogle Scholar
- 29.Fujifilm. Dimatix Materials Printer DMP-2800 Series User Manual. 1–150 (2010).Google Scholar
- 30.Loffredo, F, et al., “Polyethylenimine/N-doped Titanium Dioxide Nanoparticle Based Inks for Ink-Jet Printing Applications.” J. Appl. Polym. Sci., 122 3630–3636 (2011)CrossRefGoogle Scholar
- 31.Jiang, J, Oberdörster, G, Biswas, P, “Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies.” J. Nanoparticle Res., 11 77–89 (2009)CrossRefGoogle Scholar
- 32.Suttiponparnit, K, et al., “Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties.” Nanoscale Res Lett., 6 27 (2010)Google Scholar
- 33.M’pandou, A, Siffert, B, “Polyethyleneglycol Adsorption at the TiO2 H2O Interface: Distortion of Ionic Structure and Shear Plane Position.” Colloids Surf., 24 159–172 (1987)CrossRefGoogle Scholar
- 34.Arsov, LD, Kormann, C, Plieth, W, “Electrochemical Synthesis and In Situ Raman Spectroscopy of Thin Films of Titanium Dioxide.” J. Raman Spectrosc., 22 573–575 (1991)CrossRefGoogle Scholar
- 35.Ma, R, et al., “Carbon-Nanotube/Silver Networks in Nitrile Butadiene Rubber for Highly Conductive Flexible Adhesives.” Adv. Mater., 24 3344–3349 (2012)CrossRefGoogle Scholar
- 36.Crespo-Monteiro, N, et al., “One-Step Microstructuring of TiO2 and Ag–TiO2 Films by Continuous Wave Laser Processing in the UV and Visible Ranges.” J. Phys. Chem. C, 116 26857–26864 (2012)CrossRefGoogle Scholar
- 37.Zhao, XU, Li, Z, Chen, Y, Shi, L, Zhu, Y, “Solid-Phase Photocatalytic Degradation of Polyethylene Plastic Under UV and Solar Light Irradiation.” J. Mol. Catal. Chem., 268 101–106 (2007)CrossRefGoogle Scholar
- 38.Kamrannejad, MM, Hasanzadeh, A, Nosoudi, N, Mai, L, Babaluo, AA, “Photocatalytic Degradation of Polypropylene/TiO2 Nano-composites.” Mater. Res., 17 1039–1046 (2014)CrossRefGoogle Scholar