Journal of Coatings Technology and Research

, Volume 16, Issue 1, pp 113–123 | Cite as

Photosensitive ink formulation and inkjet printing on flexible PET substrate

  • F. TricotEmail author
  • F. Vocanson
  • D. Chaussy
  • D. Beneventi
  • Y. Lefkir
  • N. Destouches


Photochromic materials whose color can reversibly change under visible light exposure are good candidates for many applications like photooptical sensors, smart inks and paints, displays or optical storage. Among these materials, inorganic Ag:TiO2 films have been proven to be stable over time and to exhibit multicolor photochromism leading to potential high-performance systems. However, their fabrication processes are often based on laboratory equipment not adapted to industrialization and usually involve thermal treatments not compatible with soft materials, which limit the application range. The present paper proposes an alternative way to produce photochromic Ag:TiO2 films compatible with industrialization and with soft substrates. An aqueous ink, made of a dispersion of TiO2 nanoparticles and silver ions, was formulated from a commercial TiO2 suspension and a silver salt by adding a thickener and a surfactant to satisfy inkjet process requirements. The inkjet printing process was optimized on polyethylene terephthalate substrates to form thin inorganic films after IR annealing. Such a process can be adapted to any kind of substrates, in particular flexible and non-heat-resistant substrates, and can be scaled at the industrial level. The photochromic behavior of the fabricated films was finally assessed successfully after an activation step.


Ag:TiO2 thin films Flexible substrate Ink formulation Inkjet printing Photochromism 



This work is supported by ANR in the framework of Project PHOTOFLEX No. 12-NANO-0006. This research was made possible thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund). The authors also thank CLYM ( for access to the Jeol 2010F TEM. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030) and of PolyNat Carnot Institute (Investissements d’Avenir—Grant Agreement No. ANR-16-CARN-0025-01).


  1. 1.
    Ohko, Y, et al., “Multicolour Photochromism of TiO2 Films Loaded with Silver Nanoparticles.” Nat. Mater., 2 29–31 (2003)CrossRefGoogle Scholar
  2. 2.
    Han, R, Zhang, X, Wang, L, Dai, R, Liu, Y, “Size-Dependent Photochromism-Based Holographic Storage of Ag/TiO2 Nanocomposite Film.” Appl. Phys. Lett., 98 221905 (2011)CrossRefGoogle Scholar
  3. 3.
    Qiao, Q, et al., “Formation of Holographic Fringes on Photochromic Ag/TiO2 Nanocomposite Films.” Appl. Phys. Lett., 94 074104 (2009)CrossRefGoogle Scholar
  4. 4.
    Kazuma, E, Tatsuma, T, “Photoinduced Reversible Changes in Morphology of Plasmonic Ag Nanorods on TiO2 and Application to Versatile Photochromism.” Chem. Commun., 48 1733–1735 (2012)CrossRefGoogle Scholar
  5. 5.
    Liu, Z, et al., “Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses.” ACS Nano, 11 5031–5040 (2017)CrossRefGoogle Scholar
  6. 6.
    Naoi, K, Ohko, Y, Tatsuma, T, “Switchable Rewritability of Ag–TiO2 Nanocomposite Films with Multicolor Photochromism.” Chem Commun, (2005). Google Scholar
  7. 7.
    Crespo-Monteiro, N, et al., “Reversible and Irreversible Laser Microinscription on Silver-Containing Mesoporous Titania Films.” Adv. Mater., 22 3166–3170 (2010)CrossRefGoogle Scholar
  8. 8.
    Kawahara, K, Suzuki, K, Ohko, Y, Tatsuma, T, “Electron Transport in Silver-Semiconductor Nanocomposite Films Exhibiting Multicolor Photochromism.” Phys. Chem. Chem. Phys., 7 3851 (2005)CrossRefGoogle Scholar
  9. 9.
    Dahmen, C, Sprafke, AN, Dieker, H, Wuttig, M, von Plessen, G, “Optical and Structural Changes of Silver Nanoparticles During Photochromic Transformation.” Appl. Phys. Lett., 88 011923 (2006)CrossRefGoogle Scholar
  10. 10.
    Nadar, L, et al., “Multicolor Photochromism of Silver-Containing Mesoporous Films of Amorphous or Anatase TiO2.” J. Nanoparticle Res., 15 2048 (2013)CrossRefGoogle Scholar
  11. 11.
    Crespo-Monteiro, N, Destouches, N, Fournel, T, “Updatable Random Texturing of Ag/TiO2 Films for Goods Authentication.” Appl. Phys. Express, 5 075803 (2012)CrossRefGoogle Scholar
  12. 12.
    Wang, X, Yu, JC, Ho, C, Mak, AC, “A Robust Three-Dimensional Mesoporous Ag/TiO2 Nanohybrid Film.” Chem. Commun., (2005). Google Scholar
  13. 13.
    Diop, DK, et al., “Magnetron Sputtering Deposition of Ag/TiO2 Nanocomposite Thin Films for Repeatable and Multicolor Photochromic Applications on Flexible Substrates.” Adv. Mater. Interfaces, 2 1500134 (2015)CrossRefGoogle Scholar
  14. 14.
    Diop, DaoudaK, et al., “Spectral and Color Changes of Ag/TiO2 Photochromic Films Deposited on Diffusing Paper and Transparent Flexible Plastic Substrates.” Appl. Spectrosc., 71 1271–1279 (2017)CrossRefGoogle Scholar
  15. 15.
    Tricot, F, et al., “Photochromic Ag:TiO2 Thin Films on PET Substrate.” RSC Adv, 4 61305–61312 (2014)CrossRefGoogle Scholar
  16. 16.
    Tricot, F, et al., “Flexible Photochromic Ag:TiO2 Thin Films Fabricated by Ink-Jet and Flexography Printing Processes.” RSC Adv., 5 84560–84564 (2015)CrossRefGoogle Scholar
  17. 17.
    Alberius, PCA, Frindell, KL, Kramer, EJ, Stucky, GD, Chmelka, BF, “General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania Mesostructured Thin Films.” Chem. Mater., 14 3284–3294 (2002)CrossRefGoogle Scholar
  18. 18.
    Crepaldi, EL, et al., “Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2.” J. Am. Chem. Soc., 125 9770–9786 (2003)CrossRefGoogle Scholar
  19. 19.
    Yu, JC, Wang, X, Fu, X, “Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films.” Chem. Mater., 16 1523–1530 (2004)CrossRefGoogle Scholar
  20. 20.
    Nadar, L. “Surfaces fonctionnalisées à base de nanoparticules métalliques pour l’optique et la photonique”. (Thesis Université Jean Monnet-Saint-Etienne, 2011).Google Scholar
  21. 21.
    Wang, J, Li, H, Li, H, Zuo, C, Wang, H, “Thermal Stability and Optimal Photoinduced Hydrophilicity of Mesoporous TiO2 Thin Films.” J. Phys. Chem. C, 116 9517–9525 (2012)CrossRefGoogle Scholar
  22. 22.
    Tohge, N, Shinmou, K, Minami, T, “Effects of UV-Irradiation on the Formation of Oxide Thin Films from Chemically Modified Metal-Alkoxides.” J. Sol-Gel Sci. Technol., 2 581–585 (1994)CrossRefGoogle Scholar
  23. 23.
    de Galo, J, Soler-Illia, AA, Crepaldi, EduardoL, Grosso, David, Sanchez, Clement, “Block Copolymer-Templated Mesoporous Oxides.” Curr. Opin. Colloid Interface Sci., 8 109–126 (2003)CrossRefGoogle Scholar
  24. 24.
    Mozaffari, N, Mohammadi, MR, Faghihi Sani, MA, “Development of Block Copolymer-Templated Crack-Free Mesoporous Anatase-TiO2 Film: Tailoring Sol–Gel and EISA Processing Parameters and Photovoltaic Characteristics.” J. Mater. Sci. Mater. Electron., 26 1543–1553 (2015)CrossRefGoogle Scholar
  25. 25.
    Kominami, H, et al., “Novel Synthesis of Microcrystalline Titanium(IV) Oxide Having High Thermal Stability and Ultra-high Photocatalytic Activity: Thermal Decomposition of Titanium(IV) Alkoxide in Organic Solvents.” Catal. Lett., 46 235–240 (1997)CrossRefGoogle Scholar
  26. 26.
    Kipphan, H, et al., Handbook of Print Media, 140. Springer, Berlin (2000)Google Scholar
  27. 27.
    Briggs, D, Rance, DG, Kendall, CR, Blythe, AR, “Surface Modification of Poly(ethylene terephthalate) by Electrical Discharge Treatment.” Polymer, 21 895–900 (1980)CrossRefGoogle Scholar
  28. 28.
    Jang, D, Kim, D, Moon, J, “Influence of Fluid Physical Properties on Ink-Jet Printability.” Langmuir, 25 2629–2635 (2009)CrossRefGoogle Scholar
  29. 29.
    Fujifilm. Dimatix Materials Printer DMP-2800 Series User Manual. 1–150 (2010).Google Scholar
  30. 30.
    Loffredo, F, et al., “Polyethylenimine/N-doped Titanium Dioxide Nanoparticle Based Inks for Ink-Jet Printing Applications.” J. Appl. Polym. Sci., 122 3630–3636 (2011)CrossRefGoogle Scholar
  31. 31.
    Jiang, J, Oberdörster, G, Biswas, P, “Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies.” J. Nanoparticle Res., 11 77–89 (2009)CrossRefGoogle Scholar
  32. 32.
    Suttiponparnit, K, et al., “Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties.” Nanoscale Res Lett., 6 27 (2010)Google Scholar
  33. 33.
    M’pandou, A, Siffert, B, “Polyethyleneglycol Adsorption at the TiO2 H2O Interface: Distortion of Ionic Structure and Shear Plane Position.” Colloids Surf., 24 159–172 (1987)CrossRefGoogle Scholar
  34. 34.
    Arsov, LD, Kormann, C, Plieth, W, “Electrochemical Synthesis and In Situ Raman Spectroscopy of Thin Films of Titanium Dioxide.” J. Raman Spectrosc., 22 573–575 (1991)CrossRefGoogle Scholar
  35. 35.
    Ma, R, et al., “Carbon-Nanotube/Silver Networks in Nitrile Butadiene Rubber for Highly Conductive Flexible Adhesives.” Adv. Mater., 24 3344–3349 (2012)CrossRefGoogle Scholar
  36. 36.
    Crespo-Monteiro, N, et al., “One-Step Microstructuring of TiO2 and Ag–TiO2 Films by Continuous Wave Laser Processing in the UV and Visible Ranges.” J. Phys. Chem. C, 116 26857–26864 (2012)CrossRefGoogle Scholar
  37. 37.
    Zhao, XU, Li, Z, Chen, Y, Shi, L, Zhu, Y, “Solid-Phase Photocatalytic Degradation of Polyethylene Plastic Under UV and Solar Light Irradiation.” J. Mol. Catal. Chem., 268 101–106 (2007)CrossRefGoogle Scholar
  38. 38.
    Kamrannejad, MM, Hasanzadeh, A, Nosoudi, N, Mai, L, Babaluo, AA, “Photocatalytic Degradation of Polypropylene/TiO2 Nano-composites.” Mater. Res., 17 1039–1046 (2014)CrossRefGoogle Scholar

Copyright information

© American Coatings Association 2018

Authors and Affiliations

  1. 1.UJM-Saint-Etienne, CNRS, Institut d’Optique Graduate School, Laboratoire Hubert Curien UMR 5516Univ LyonSaint EtienneFrance
  2. 2.CNRS, Grenoble INP, Institute of Engineering, LGP2Univ. Grenoble AlpesGrenobleFrance

Personalised recommendations