Journal of Coatings Technology and Research

, Volume 3, Issue 4, pp 313–322 | Cite as

Underfilm corrosion on polyurethane-coated aluminum alloy 2024-T3 containing dissimilar metal fasteners

  • S. Intem
  • A. E. Hughes
  • A. K. Neufeld
  • T. Markley
  • A. M. Glenn


Panels of AA2024-T3 were fastened using Cu and Cu−Ni fasteners, pretreated, and coated with around 25 μm of polyurethane film. The pretreatments were based on typical conversion coating processes. Samples included alkalinecleaned, deoxidized, and conversion-coated. The conversion coatings included chromate and cerium-based conversion coatings. Samples were tested by scribing around the fastener and on the AA2024-T3 (matrix), exposing them to HCl vapor for 15 min, and subjecting them to a filiform corrosion test by exposure to 82% relative humidity at 40±1°C for up to 1000 hr. Inspection showed that the filiform corrosion that developed from a scribe around the fastener was an order of magnitude larger than from a scribe on the matrix (scribe on AA2024-T3). With respect to the surface treatments, the amount of filiform corrosion for scribes on the matrix was greatest on the alkaline-cleaned samples, followed by the deoxidized samples, with the conversion-coated samples performing the best. The amount of filiform corrosion for scribes around the fasteners was highest for the deoxidized sample.


Corrosion testing corrosion corrosion protection polyurethanes accelerated testing chromate chromate replacements conversion coating cerium-based conversion coatings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Corrosion of Aluminum and Aluminum Alloys, Davis, J.R. (Ed.), ASM International, Chapt. 3 and 4, 1999.Google Scholar
  2. (2).
    Pitt, S. and Jones, R., Eng. Failure. Anal., 4 (4), 237 (1997).CrossRefGoogle Scholar
  3. (3).
    Liao, M., Bellinger, N. C., and Komorowski, J.P., Int. J. Fatigue, 25, 1059 (2003).CrossRefGoogle Scholar
  4. (4).
    Lepine, B.A. and Holt, R.T., Can. Aero. Space J., 43 (I), 28 (1997).Google Scholar
  5. (5).
    Terada, H., Int. J. Fatigue, 23, S21 (2001).CrossRefGoogle Scholar
  6. (6).
    Hagemaier, D. and Kark, G., Mat. Eval., January, 25 (1997).Google Scholar
  7. (7).
    Hagemaier, D. and Nguyen, K., Mat. Eval., January, 91 (1994).Google Scholar
  8. (8).
    Thompson, J.C., Mat. Eval., December, 1398 (1993).Google Scholar
  9. (9).
    Hagemaier, D., Mat. Eval., May, 682 (1982).Google Scholar
  10. (10).
    Brown, A.S., Mat. Perf., September (1992).Google Scholar
  11. (11).
    Schmitt, G.F., SAMPE J., 43 (1), January/February (1998).Google Scholar
  12. (12).
    Hahin, C. and Buchheit, R.G., “Filiform Corrosion,” in Corrosion: Fundamentals, Testing and Protection, ASM International, Vol. 13A, p. 248, 2003.Google Scholar
  13. (13).
    Buchheit, R.G. and Hughes, A.E., “Chromate and Chromate-Free Coatings,” Section 4b American Society for Materials, Materials Park, OH, Vol. 13A, Corrosion: Fundamentals, Testing and Protection, pp. 720–736, 2003.Google Scholar
  14. (14).
    Lytle, F.W., Greegor, R.B., Bibbins, G.L., Blohowiak, K.Y., Smith, R.E., and Tuss, G.D., Corros. Sci., 37 (3), 349 (1995).CrossRefGoogle Scholar
  15. (15).
    Hughes, A.E., Taylor, R.J., and Hinton, B.R.W., Surf. Interface Anal., 25, 223 (1997).CrossRefGoogle Scholar
  16. (16).
    Hughes, A.E., Taylor, R.J., Nelson, K.J.H., Hinton, B.R.W., and Wilson, L., Mater. Sci. Tech., 12, 928 (1996).CrossRefGoogle Scholar
  17. (17).
    Moffitt, C.E., Wieliczka, D.M., and Yasuda, H.K., Surf. Coat. Technol., 137, 188 (2001).CrossRefGoogle Scholar
  18. (18).
    Mol, A.J., Hughes, A.E., Hinton, B.R.W., and van der Zwaag, S., Corros. Sci., 46, 1201 (2004).CrossRefGoogle Scholar
  19. (19).
    Mora, N., Cano, E., Polo, J.L., Puente, J.M., and Bastidas, J.M., Corros. Sci., 46, 563 (2004).CrossRefGoogle Scholar
  20. (20).
    Ardelean, H., Fiaud, C., and Marcus, P., Mater. Corros., 52, 889 (2001).CrossRefGoogle Scholar
  21. (21).
    Aramaki, K., Corros. Sci., 46, 1565 (2004).CrossRefGoogle Scholar
  22. (22).
    Hinton, B.R.W. and Wilson, L., Corros. Sci., 29, 967 (1989).CrossRefGoogle Scholar
  23. (23).
    Aballe, A., Bethencourt, M., Botana, F.J., Cano, M.J., and Marcos, M., Mater. Corros., 53, 176 (2002).CrossRefGoogle Scholar
  24. (24).
    Dabala, M., Ramous, E., and Magrini, M., Mater. Corros., 55, 381 (2004).CrossRefGoogle Scholar
  25. (25).
    Arnott, D.R., Hinton, B.R.W., and Ryan, N.E., Mat. Perform., 26, 42 (1987).Google Scholar
  26. (26).
    Hinton, B.R.W., Arnott, D.R., and Ryan, N.E., Mat. Forum, 9, 162 (1986).Google Scholar
  27. (27).
    Bethencourt, M., Botana, F.J., Calvino, J.J., Marcos, M., and Rodriguez-Chacon, M.A., Corros. Sci., 40, 1803 (1998).CrossRefGoogle Scholar
  28. (28).
    Fahrenholtz, W.G., O’Keefe, M.J., Zhou, H., and Grant, J.T., Surf. Coat. Tech., 155, 208 (2002).CrossRefGoogle Scholar
  29. (29).
    Rivera, B.F., Johnson, B.Y., O’Keefe, M.J., and Fahrenholtz, W.G., Surf. Coat. Technol., 176, 349 (2004).CrossRefGoogle Scholar
  30. (30).
    Wang, C., Jiang, F., and Wang, F., Corrosion, 60, 237 (2004).CrossRefGoogle Scholar
  31. (31).
    Campestrini, P., Terryn, H., Hovestad, A., and de Wit, H., Surf. Coat. Technol., 176, 365 (2004).CrossRefGoogle Scholar
  32. (32).
    Schmitt Handsberg, Th. and Schubach, O., ATB Metallurgie, 43 (1,2), 9 (2003).Google Scholar
  33. (33).
    Hughes, A.E., Hardin, S.G., Harvey, T.G., Nikour, T., Hinton, B., Galassi, A., McAdam, G., Stonham, A., Harris, S.J., Church, S., Figgures, C., Dixon, D., Bowden, C., Morgan, P., Toh, S.K., McCulloch, D., and Du Plessis, J., ATB Metallurgie, 43 (1,2), 264 (2003).Google Scholar
  34. (34).
    Hughes, A.E., Hardin, S.G., Wittel, K., and Miller, P.R., “Accelerated Cerium-Based Conversion Coatings,” NACE 2000, Orlando, FL, March 27–31, 2000; Corrosion 2000 Research Topical Symposium—“Surface Conversions of Aluminum and Ferrous Alloys for Corrosion Resistance,” NACE International (Houston, TX), 47–66, 2000.Google Scholar
  35. (35).
    Hughes, A.E., Taylor, R.J., and Hinton, B.R.W., Surf. Interface Anal., 23, 540 (1995).CrossRefGoogle Scholar
  36. (36).
    Hughes, A.E., Gorman, J.D., Miller, P.R., Sexton, B.A., Paterson, P.J.K., and Taylor, R.J., Surf. Interface Anal., 36, 290 (2004).CrossRefGoogle Scholar
  37. (37).
    Hughes, A.E., Mol, A.J., Hinton, B.R.W., and van der Zwaag, S., Corros. Sci., 47, 107 (2005).CrossRefGoogle Scholar
  38. (38).
    Hughes, A.E., Nelson, K.J.H., Taylor, R.J., Hinton, B.R.W., Henderson, M.J., Wilson, L., and Nugent, S.A., “Metal Treatment with Acidic, Rare Earth Ion Containing Cleaning Solution,” EU Patent No. 0719350.Google Scholar
  39. (39).
    Hardin, S.G., Nelson, K.J.H., Wittel, K., and Hughes, A.E., “Process and Solution for Providing a Conversion Coating on a Metallic Surface.” U.S. Patent 6,503,565.Google Scholar
  40. (40).
    Mol, A., “Filliform Corrosion of Aluminum Alloys. The Effect of Microstructural Variations in the Substrate,” Ph.D. Thesis, Laboratory of Materials Science of the Delft University of Technology, The Netherlands, 2000.Google Scholar
  41. (41).
    Leth-Olsen, H. and Nisancioglu, K., Corrosion, 53 (9), 705 (1997).CrossRefGoogle Scholar
  42. (42).
    McMurray, H.N., Williams, G., and O’Driscoll, S., J. Electrochem. Soc., 151 (7): B406-B414 (2004).CrossRefGoogle Scholar
  43. (43).
    McMurray, H.N. and Williams, G., Corrosion, 60 (3), 219 (2004).CrossRefGoogle Scholar
  44. (44).
    Hughes, A.E., Nelson, K.J.H., and Turney, T.W., “Process and Solution for Providing a Conversion Coating on a Metal Surface”, EU Patent No. 0804633.Google Scholar
  45. (45).
    LeBozec, N., Persson, D., Thierry, D., and Axelsen, S.B., Corrosion, 60, 584 (2004).CrossRefGoogle Scholar
  46. (46).
    Scamans, G.M., Asfeth, A., Thompson, G.E., and Zhou, X., Proc. 3rd International Symposium of the Aluminum Surface Science and Technology, ATB Metall., 43, (1,2), 90 (2003).Google Scholar
  47. (47).
    Leth-Olsen, H. and Nisancioglu, K., Corros. Sci., 40 (7), 1179 (1998).CrossRefGoogle Scholar
  48. (48).
    Slabaugh, W.H., Dejager, W., Hoover, S.E., and Hutchinson, L.I., “Filiform Corrosion of Aluminum,” J. Paint Technol., 44, No. 566, 76 (1972).Google Scholar
  49. (49).
    Nelson, K.J.H., Hughes, A.E., Taylor, R.J., Hinton, B.R.W., Wilson, L., and Henderson, M., Mater. Sci. Technol. 17 (10), 1211 (2001).CrossRefGoogle Scholar
  50. (50).
    Caicedo-Martinez, C.E., Koroleva, E.V., Thompson, G.E., Skeldon, P., Shimizu, K., Habazaki, H., Hoellrigl, G., Smith, G., Flukes, G., and Foord, D.T., Proc. 3rd International Symposium of the Aluminum Surface Science and Technology, ATB Metall. 43 (1,2), 301 (2003).Google Scholar
  51. (51).
    Martyak, N.M., McCaskie, J.E., Hulsmann, T., and Schroer, D., Interfinish 96, 14th World Congress, Institute of Metal Finishing, Vol. 3, p. 229, Birmingham, September 12–14, 1996.Google Scholar
  52. (52).
    Kendig, M.W. and Buchheit, R.G., Corrosion, 59 (5), 379 (2003).CrossRefGoogle Scholar
  53. (53).
    Kaesche, H., “Pitting Corrosion of Aluminum and Intergranular Corrosion of Al-Alloys,” in Localized Corrosion, 3, NACE International, Houston, TX, p. 516, 1971.Google Scholar
  54. (54).
    Sehgal, A., Frankel, G.S., Zoofan, B., and Rokhlin, S., J. Electrochem. Soc., 147, 140 (2000).CrossRefGoogle Scholar
  55. (55).
    Aldekwicz, A.J., Isaacs, H.S., and Davenport, A.J., J. Electrochem. Soc., 142, 3343 (1995).Google Scholar
  56. (56).
    Asfeth, A., Nordlien, J.H., Scamens, G.M., and Nisancioglu, K., Corros. Sci., 44, 2529 (2002).CrossRefGoogle Scholar
  57. (57).
    Zhao, J., Frankel, G., and McCreery, R., J. Electrochem. Soc., 145, 2258 (1998).CrossRefGoogle Scholar
  58. (58).
    Poulain, V. and Petitjean, J.-P., Mater. Sci. Forum, 217–222, 1641 (1996).CrossRefGoogle Scholar
  59. (59).
    Aldykewicz, A.J., Davenport, A.J., and Isaacs, H.S., J. Electrochem. Soc., 143, 147 (1996).CrossRefGoogle Scholar

Copyright information

© OCCA 2006

Authors and Affiliations

  • S. Intem
    • 1
  • A. E. Hughes
    • 2
  • A. K. Neufeld
    • 2
  • T. Markley
    • 2
  • A. M. Glenn
    • 3
  1. 1.Ecole Polytechnique de l’université de NantesNantesFrance
  2. 2.Corrosion Science and Surface DesignCSIRO Manufacturing & Materials TechnologyClaytonAustralia
  3. 3.CSIRO MineralsClayton SouthAustralia

Personalised recommendations