Science and Engineering Ethics

, Volume 25, Issue 1, pp 143–157 | Cite as

Social Simulation Models at the Ethical Crossroads

  • Pawel SobkowiczEmail author
Original Paper


Computational models of group opinion dynamics are one of the most active fields of sociophysics. In recent years, advances in model complexity and, in particular, the possibility to connect these models with detailed data describing individual behaviors, preferences and activities, have opened the way for the simulations to describe quantitatively selected, real world social systems. The simulations could be then used to study ‘what-if’ scenarios for opinion change campaigns, political, ideological or commercial. The possibility of the practical application of the attitude change models necessitates that the research community working in the field should consider more seriously the moral aspects of their efforts, in particular the potential for their use for unintended goals. The paper discusses these issues, and offers a suggestion for a new research direction: using the attitude models to increase the awareness and detection of social manipulation cases. Such research would offer a scientific challenge and meet the ethical criteria.


Agent based models Opinion dynamics Attitude change Big Data Research ethics 



The author would like the anonymous Reviewers for their stimulating remarks leading to significant improvements in understanding of the nature of the ethical issues involved in opinion modeling research.


  1. Aach, J., Lunshof, J., Iyer, E., & Church, G. M. (2017). Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife, 6, e20674.CrossRefGoogle Scholar
  2. Alvarez, R., Garcia, D., Moreno, Y., & Schweitzer, F. (2015). Sentiment cascades in the 15M movement. EPJ Data Science, 4(1), 6.CrossRefGoogle Scholar
  3. Athey, S. (2017). Beyond prediction: Using Big Data for policy problems. Science, 355(6324), 483–485.CrossRefGoogle Scholar
  4. Ball, P. (2002). The physical modelling of society: A historical perspective. Physica A: Statistical Mechanics and its Applications, 314(1), 1–14.CrossRefGoogle Scholar
  5. Ben-Naim, E., Frachebourg, L., & Krapivsky, P. L. (1996). Coarsening and persistence in the voter model. Physical Review E, 53(4), 3078–3087.CrossRefGoogle Scholar
  6. Bernardes, A. T., Costa, U. M. S., Araujo, A. D., & Stauffer, D. (2001). Damage spreading, coarsening dynamics and distribution of political votes in Sznajd model on square lattice. International Journal of Modern Physics C, 12(2), 159–168.CrossRefGoogle Scholar
  7. Borge-Holthoefer, J., Meloni, S., Gonçalves, B., Moreno, Y., Moretti, P., Liu, S., et al. (2013). Emergence of influential spreaders in modified rumor models. Journal of Statistical Physics, 151, 383–393.CrossRefGoogle Scholar
  8. Boyd, D., & Crawford, K. (2011). Six provocations for Big Data. In A decade in internet time: Symposium on the dynamics of the internet and society (Vol. 21). Oxford: Oxford Internet Institute.Google Scholar
  9. Castellano, C., Vilone, D., & Vespignani, A. (2003). Incomplete ordering of the voter model on small-world networks. EPL (Europhysics Letters), 63, 153.CrossRefGoogle Scholar
  10. Cox, J., & Griffeath, D. (1986). Diffusive clustering in the two dimensional voter model. The Annals of Probability, 14(2), 347–370.CrossRefGoogle Scholar
  11. Das, S., Lavoie, A., & Magdon-Ismail, M. (2016). Manipulation among the arbiters of collective intelligence: How Wikipedia administrators mold public opinion. ACM Transactions on the Web (TWEB), 10(4), 24.Google Scholar
  12. Deffuant, G., Neau, D., Amblard, F., & Weisbuch, G. (2000). Mixing beliefs among interacting agents. Advances in Complex Systems, 3, 87–98.CrossRefGoogle Scholar
  13. Deffuant, G., Amblard, F., Weisbuch, G., & Faure, T. (2002). How can extremism prevail? A study based on the relative agreement interaction model. Journal of Artificial Societies and Social Simulation, 5(4).
  14. de Lima, T. F. M., Lana, R. M., de Senna Carneiro, T. G., Codeço, C. T., Machado, G. S., Ferreira, L. S., et al. (2016). DengueMe: A tool for the modeling and simulation of dengue spatiotemporal dynamics. International Journal of Environmental Research and Public Health, 13(9), 920.CrossRefGoogle Scholar
  15. Dellarocas, C. (2006). Strategic manipulation of Internet opinion forums: Implications for consumers and firms. Management Science, 52(10), 1577–1593.CrossRefGoogle Scholar
  16. DellaVigna, S., & Kaplan, E. (2007). The Fox News effect: Media bias and voting. The Quarterly Journal of Economics, 122(3), 1187–1234.CrossRefGoogle Scholar
  17. Duggins, P. (2017). A psychologically-motivated model of opinion change with applications to American politics. Journal of Artificial Societies and Social Simulation, 20, 13.CrossRefGoogle Scholar
  18. Ehni, H. J. (2008). Dual use and the ethical responsibility of scientists. Archivum Immunologiae et Therapiae Experimentalis, 56(3), 147.CrossRefGoogle Scholar
  19. Epstein, R., & Robertson, R. E. (2015). The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections. Proceedings of the National Academy of Sciences, 112(33), E4512–E4521.CrossRefGoogle Scholar
  20. Faria, N., Quick, J., Claro, I., Thézé, J., de Jesus, J., Giovanetti, M., et al. (2017). Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature, 546(7658), 406–410.CrossRefGoogle Scholar
  21. Fleischmann, K. R., & Wallace, W. A. (2006). Ethical implications of values embedded in computational models: An exploratory study. Proceedings of the Association for Information Science and Technology, 43(1), 1–16.CrossRefGoogle Scholar
  22. Fleischmann, K. R., & Wallace, W. A. (2017). Ethical implications of computational modeling. The Bridge, 41(1), 45–51.Google Scholar
  23. Forelle, M., Howard, P., Monroy-Hernández, A., & Savage, S. (2015). Political bots and the manipulation of public opinion in Venezuela. arXiv preprint arXiv:150707109.
  24. Fortunato, S., & Castellano, C. (2007). Scaling and universality in proportional elections. Physical Review Letters, 99(13), 138–701.CrossRefGoogle Scholar
  25. Galam, S. (2012). Sociophysics: A physicist’s modeling of psycho-political phenomena. Berlin: Springer.CrossRefGoogle Scholar
  26. Galam, S. (2016). The Trump phenomenon, an explanation from sociophysics. arXiv preprint arXiv:160903933.
  27. Galam, S., Chopard, B., & Droz, M. (2002). Killer geometries in competing species dynamics. Physica A: Statistical Mechanics and Its Applications, 314(1), 256–263.CrossRefGoogle Scholar
  28. Gorwa, R. (2017). Computational propaganda in Poland: False amplifiers and the digital public sphere. Technical report working paper 2017. 2, Project on Computational Propaganda, University of Oxford.Google Scholar
  29. Grubaugh, N. D., Ladner, J. T., Kraemer, M. U., Dudas, G., Tan, A. L., Gangavarapu, K., et al. (2017). Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 546(7658), 401–405.CrossRefGoogle Scholar
  30. Hegselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of Artificial Societies and Social Simulation, 5(3).
  31. Holyst, J., Kacperski, K., & Schweitzer, F. (2001). Social impact models of opinion dynamics. Annual Reviews of Computational Physics, 9, 253–273. Scholar
  32. Horbulin, W. P., Dodonow, O. G., & Lande, D. W. (2009). Informacijni operacji ta bezpeka suspilstwa: zagrozy, protidatia modellowanja. Technical report, Institut Problem Nacionalnoi Bezpieki i Oborony Ukraini (National Security and Defense Council of Ukraine).Google Scholar
  33. Hosni, H., & Vulpiani, A. (2017). Forecasting in light of Big Data. Philosophy & Technology.
  34. Hufnagel, L., Brockmann, D., & Geisel, T. (2004). Forecast and control of epidemics in a globalized world. Proceedings of the National Academy of Sciences of the United States of America, 101(42), 15124–15129.CrossRefGoogle Scholar
  35. Kacperski, K., & Holyst, J. (1999). Opinion formation model with strong leader and external impact: A mean field approach. Physica A, 269, 511–526.CrossRefGoogle Scholar
  36. Kacperski, K., & Holyst, J. (2000). Phase transitions as a persistent feature of groups with leaders in models of opinion formation. Physica A, 287, 631–643.CrossRefGoogle Scholar
  37. Kelman, H. C. (1965). Manipulation of human behavior: An ethical dilemma for the social scientist. Journal of Social Issues, 21(2), 31–46.CrossRefGoogle Scholar
  38. Kijowski, D. J., Dankowicz, H., & Loui, M. C. (2013). Observations on the responsible development and use of computational models and simulations. Science and Engineering Ethics, 19(1), 63–81.CrossRefGoogle Scholar
  39. Kleijnen, J. P. (2001). Ethical issues in modeling: Some reflections. European Journal of Operational Research, 130(1), 223–230.CrossRefGoogle Scholar
  40. Koepsell, D. (2010). On genies and bottles: Scientists moral responsibility and dangerous technology R&D. Science and Engineering Ethics, 16(1), 119–133.CrossRefGoogle Scholar
  41. Le Menestrel, M., & Van Wassenhove, L. N. (2004). Ethics outside, within, or beyond or models? European Journal of Operational Research, 153(2), 477–484.CrossRefGoogle Scholar
  42. Lekka-Kowalik, A. (2010). Why science cannot be value-free. Science and Engineering Ethics, 16(1), 33–41.CrossRefGoogle Scholar
  43. Metsky, H. C., Matranga, C. B., Wohl, S., Schaffner, S. F., Freije, C. A., Winnicki, S. M., et al. (2017). Zika virus evolution and spread in the Americas. Nature, 546(7658), 411–415.CrossRefGoogle Scholar
  44. Mihaylov, T., Georgiev, G., & Nakov, P. (2015a). Finding opinion manipulation trolls in news community forums. In CoNLL (pp. 310–314).Google Scholar
  45. Mihaylov, T., Koychev, I., Georgiev, G., & Nakov, P. (2015b). Exposing paid opinion manipulation trolls. In RANLP (pp. 443–450).Google Scholar
  46. Miller, S., & Selgelid, M. J. (2007). Ethical and philosophical consideration of the dual-use dilemma in the biological sciences. Science and Engineering Ethics, 13(4), 523–580.CrossRefGoogle Scholar
  47. Moran, K. R., Fairchild, G., Generous, N., Hickmann, K., Osthus, D., Priedhorsky, R., et al. (2016). Epidemic forecasting is messier than weather forecasting: The role of human behavior and Internet data streams in epidemic forecast. Journal of Infectious Diseases, 214(Suppl 4), S404–S408.CrossRefGoogle Scholar
  48. Nowak, A., & Lewenstein, M. (1996). Modeling social change with cellular automata. In R. Hegselmann, U. Mueller, & K. G. Troitzsch (Eds.), Modelling and simulation in the social sciences from a philosophy of science point of view (pp. 249–285). Dordrecht: Kluver.CrossRefGoogle Scholar
  49. Nowak, A., Szamrej, J., & Latané, B. (1990). From private attitude to public opinion: A dynamic theory of social impact. Psychological Review, 97(3), 362–376.CrossRefGoogle Scholar
  50. O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. New York, NY: Crown Publishing Group.Google Scholar
  51. Palmer, E. (2017). Beyond proximity: Consequentialist ethics and system dynamics. Etikk i praksis-Nordic Journal of Applied Ethics, 11(1), 89–105.Google Scholar
  52. Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. London: Penguin.Google Scholar
  53. Pasquale, F. (2015). The black box society: The secret algorithms that control money and information. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  54. Peña-López, I., Congosto, M., & Aragón, P. (2014). Spanish Indignados and the evolution of the 15M movement on Twitter: Towards networked para-institutions. Journal of Spanish Cultural Studies, 15(1–2), 189–216.CrossRefGoogle Scholar
  55. Pruyt, E., & Kwakkel, J. (2007). Combining system dynamics and ethics: Towards more science. In 25th international conference of the system dynamics society, Boston, July 2007.Google Scholar
  56. Sabatelli, L., & Richmond, P. (2003). Phase transitions, memory and frustration in a Sznajd-like model with synchronous updating. International Journal of Modern Physics C, 14, 1223–1229.CrossRefGoogle Scholar
  57. Sabatelli, L., & Richmond, P. (2004). Non-monotonic spontaneous magnetization in a Sznajd-like consensus model. Physica A: Statistical Mechanics and its Applications, 334(1), 274–280.CrossRefGoogle Scholar
  58. Selgelid, M. J. (2009). Governance of dual-use research: An ethical dilemma. Bulletin of the World Health Organization, 87(9), 720–723.CrossRefGoogle Scholar
  59. Slanina, F., & Lavicka, H. (2003). Analytical results for the Sznajd model of opinion formation. European Physical Journal B-Condensed Matter, 35(2), 279–288.Google Scholar
  60. Sobkowicz, P. (2009). Modelling opinion formation with physics tools: Call for closer link with reality. Journal of Artificial Societies and Social Simulation, 12(1). Scholar
  61. Sobkowicz, P. (2010). Effect of leader’s strategy on opinion formation in networked societies with local interactions. International Journal of Modern Physics C (IJMPC), 21(6), 839–852.CrossRefGoogle Scholar
  62. Sobkowicz, P. (2016). Quantitative agent based model of opinion dynamics: Polish elections of 2015. PLoS ONE, 11(5), e0155098.CrossRefGoogle Scholar
  63. Stauffer, D. (2001). Monte Carlo simulations of Sznajd models. Journal of Artificial Societies and Social Simulation, 5(1).
  64. Stauffer, D. (2002). Sociophysics: The Sznajd model and its applications. Computer Physics Communications, 146(1), 93–98.CrossRefGoogle Scholar
  65. Stauffer, D., & de Oliveira, P. M. C. (2002). Persistence of opinion in the Sznajd consensus model: Computer simulation. The European Physical Journal B-Condensed Matter, 30(4), 587–592.Google Scholar
  66. Sunstein, C. R. (2016). Fifty shades of manipulation. Journal of Marketing Behavior, 1(3–4), 213–244.Google Scholar
  67. Sznajd-Weron, K., & Sznajd, J. (2000). Opinion evolution in closed community. International Journal of Modern Physics C, 11, 1157–1166.CrossRefGoogle Scholar
  68. Tufekci, Z. (2014). Engineering the public: Big Data, surveillance and computational politics. First Monday, 19(7).
  69. Van den Broeck, W., Gioannini, C., Gonçalves, B., Quaggiotto, M., Colizza, V., & Vespignani, A. (2011). The Gleamviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infectious Diseases, 11(1), 37.CrossRefGoogle Scholar
  70. Verelst, F., Willem, L., & Beutels, P. (2016). Behavioural change models for infectious disease transmission: A systematic review (2010–2015). Journal of the Royal Society Interface, 13(125), 20160820.CrossRefGoogle Scholar
  71. Weisbuch, G. (2004). Bounded confidence and social networks. The European Physical Journal B-Condensed Matter and Complex Systems, 38(2), 339–343.CrossRefGoogle Scholar
  72. Weisbuch, G., Deffuant, G., Amblard, F., & Nadal, J. P. (2003). Interacting agents and continuous opinions dynamics. In R. Cowan & N. Jonard (Eds.), Heterogenous agents, interactions and economic performance. Lecture notes in economics and mathematical systems (Vol. 521, pp. 225–242). Berlin: Springer.CrossRefGoogle Scholar
  73. Wragg, T. (2006). Modelling the effects of information campaigns using agent-based simulation.
  74. Zhang, M., Verbraeck, A., Meng, R., Chen, B., & Qiu, X. (2016). Modeling spatial contacts for epidemic prediction in a large-scale artificial city. Journal of Artificial Societies and Social Simulation, 19(4).

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.WarsawPoland

Personalised recommendations