Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Development of Corn Fiber Gum–Soybean Protein Isolate Double Network Hydrogels Through Synergistic Gelation

  • 11 Accesses

Abstract

Corn fiber gum (CFG)–soybean protein isolate (SPI) double network (DN) hydrogel was fabricated under the action of laccase and D-(+)-gluconic acid δ-lactone (GDL) at room temperature. Time sweep dynamic rheological analysis indicated that laccase and GDL work synergistically to enhance the gel strength of CFG-SPI DN hydrogels. The gel strength of CFG-SPI DN hydrogel was higher than those of hydrogels prepared by either constituent. Uniaxial compression test and texture profile analysis showed that CFG-SPI DN hydrogel integrated the mechanical properties of CFG and SPI networks, whose fracture strain was 20 times higher than that of CFG hydrogel, while the hardness was about twice the value that of SPI hydrogel. Scanning electron microscopy observation confirmed that both CFG and SPI participated in the formation of CFG-SPI DN hydrogel. CFG-SPI DN hydrogel showed a more regular and denser microstructure as compared with hydrogels prepared by single constituent. CFG-SPI DN hydrogels with various mechanical properties, water-holding capacities and microstructures were prepared by controlling the concentrations of CFG and SPI. Among which, CFG-SPI double network hydrogel with 7.0% SPI and 1.0% CFG exhibited the highest hardness and water-holding capacity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

CFG:

Corn fiber gum

SPI:

Soybean protein isolate

GDL:

D-(+)-gluconic acid δ-lactone

SPI-SN:

SPI-single network

CFG-SN:

CFG-single network

DN:

Double network

References

  1. AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th ed.). St. Paul.

  2. Ahmed, E. M. (2015). Hydrogel: preparation, characterization, and applications: a review. Journal of Advanced Research, 6(2), 105–121.

  3. Alavi, F., Emam-Djomeh, Z., Yarmand, M. S., Salami, M., Momen, S., & Moosavi-Movahedi, A. A. (2018). Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids, 85, 267–280.

  4. Alting, A. C., de Jongh, H. H., Visschers, R. W., & Simons, J. W. F. (2002). Physical and chemical interactions in cold gelation of food proteins. Journal of Agricultural and Food Chemistry, 50(16), 4682–4689.

  5. Ayala-Soto, F. E., Serna-Saldívar, S. O., Pérez-Carrillo, E., & García-Lara, S. (2014). Relationship between hydroxycinnamic profile with gelation capacity and rheological properties of arabinoxylans extracted from different maize fiber sources. Food Hydrocolloids, 39, 280–285.

  6. Baeza, R. I., Carp, D. J., Pérez, O. E., & Pilosof, A. M. R. (2002). κ-Carrageenan—protein interactions: effect of proteins on polysaccharide gelling and textural properties. LWT-Food Science and Technology, 35(8), 741–747.

  7. Berlanga-Reyes, C. M., Carvajal-Millán, E., Lizardi-Mendoza, J., Rascón-Chu, A., Marquez-Escalante, J. A., & Martínez-López, A. L. (2009). Maize arabinoxylan gels as protein delivery matrices. Molecules, 14(4), 1475–1482.

  8. Berlanga-Reyes, C. M., Carvajal-Millan, E., Lizardi-Mendoza, J., Islas-Rubio, A. R., & Rascón-Chu, A. (2011). Enzymatic cross-linking of alkali extracted arabinoxylans: gel rheological and structural characteristics. International Journal of Molecular Sciences, 12(9), 5853–5861.

  9. Caillard, R., Mateescu, M. A., & Subirade, M. (2010). Maillard-type cross-linked soy protein hydrogels as devices for the release of ionic compounds: an in vitro study. Food Research International, 43(10), 2349–2355.

  10. Carvajal-Millan, E., Guigliarelli, B., Belle, V., Rouau, X., & Micard, V. (2005). Storage stability of laccase induced arabinoxylan gels. Carbohydrate Polymers, 59(2), 181–188.

  11. Chen, X., Martin, B. D., Neubauer, T. K., Linhardt, R. J., Dordick, J. S., & Rethwisch, D. G. (1995). Enzymatic and chemoenzymatic approaches to synthesis of sugar-based polymer and hydrogels. Carbohydrate Polymers, 28(1), 15–21.

  12. De Jong, S., Klok, H. J., & Van de Velde, F. (2009). The mechanism behind microstructure formation in mixed whey protein–polysaccharide cold-set gels. Food Hydrocolloids, 23(3), 755–764.

  13. de Oliveira Cardoso, V. M., Cury, B. S. F., Evangelista, R. C., & Gremião, M. P. D. (2017). Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. Journal of the Mechanical Behavior of Biomedical Materials, 65, 317–333.

  14. Deng, C., Liu, Y., Li, J., Yadav, M. P., & Yin, L. (2018). Diverse rheological properties, mechanical characteristics and microstructures of corn fiber gum/soy protein isolate hydrogels prepared by laccase and heat treatment. Food Hydrocolloids, 76, 113–122.

  15. Derkach, S. R., Ilyin, S. O., Maklakova, A. A., Kulichikhin, V. G., & Malkin, A. Y. (2015). The rheology of gelatin hydrogels modified by κ-carrageenan. LWT-Food Science and Technology, 63(1), 612–619.

  16. Funami, T. (2011). Next target for food hydrocolloid studies: texture design of foods using hydrocolloid technology. Food Hydrocolloids, 25(8), 1904–1914.

  17. Gao, X. Q., Kang, Z. L., Zhang, W. G., Li, Y. P., & Zhou, G. H. (2015). Combination of κ-carrageenan and soy protein isolate effects on functional properties of chopped low-fat pork batters during heat-induced gelation. Food and Bioprocess Technology, 8(7), 1524–1531.

  18. Gong, J. P., Katsuyama, Y., Kurokawa, T., & Osada, Y. (2003). Double-network hydrogels with extremely high mechanical strength. Advanced Materials, 15(14), 1155–1158.

  19. Guo, S. T., & Ono, T. (2005). The role of composition and content of protein particles in soymilk on tofu curding by glucono-δ-lactone or calcium sulfate. Journal of Food Science, 70(4), C258–C262.

  20. Guo, J., Jin, Y. C., Yang, X. Q., Yu, S. J., Yin, S. W., & Qi, J. R. (2013). Computed microtomography and mechanical property analysis of soy protein porous hydrogel prepared by homogenizing and microbial transglutaminase cross-linking. Food Hydrocolloids, 31(2), 220–226.

  21. Guo, J., Liu, Y. C., Yang, X. Q., Jin, Y. C., Yu, S. J., Wang, J. M., et al. (2014). Fabrication of edible gellan gum/soy protein ionic-covalent entanglement gels with diverse mechanical and oral processing properties. Food Research International, 62, 917–925.

  22. Guo, C., Zhang, Z., Chen, J., Fu, H., Subbiah, J., Chen, X., & Wang, Y. (2017). Effects of radio frequency heating treatment on structure changes of soy protein isolate for protein modification. Food and Bioprocess Technology, 10(8), 1574–1583.

  23. Hashimoto, S., Shogren, M. D., & Pomeranz, Y. (1987). Cereal pentosans: their estimation and significance. I. Pentosans in wheat and milled wheat products. Cereal Chemistry, 64(1), 30–34.

  24. Hou, J. J., Yang, X. Q., Fu, S. R., Wang, M. P., & Xiao, F. (2016). Preparation of double‐network tofu with mechanical and sensory toughness. International journal of food science & technology, 51(4), 962–969.

  25. Izydorczyk, M. S., Biliaderis, C. G., & Bushuk, W. (1990). Oxidative gelation studies of water-soluble pentosans from wheat. Journal of Cereal Science, 11(2), 153–169.

  26. Kocher, P. N., & Foegeding, E. A. (1993). Microcentrifuge-based method for measuring water-holding of protein gels. Journal of Food Science, 58(5), 1040–1046.

  27. Luo, Y., Teng, Z., Wang, X., & Wang, Q. (2013). Development of carboxymethyl chitosan hydrogel beads in alcohol-aqueous binary solvent for nutrient delivery applications. Food Hydrocolloids, 31(2), 332–339.

  28. Luo, Q., Borst, J. W., Westphal, A. H., Boom, R. M., & Janssen, A. E. (2017). Pepsin diffusivity in whey protein gels and its effect on gastric digestion. Food Hydrocolloids, 66, 318–325.

  29. Maltais, A., Remondetto, G. E., & Subirade, M. (2010). Tabletted soy protein cold-set hydrogels as carriers of nutraceutical substances. Food Hydrocolloids, 24(5), 518–524.

  30. Mao, R., Tang, J., & Swanson, B. G. (2001). Water holding capacity and microstructure of gellan gels. Carbohydrate Polymers, 46(4), 365–371.

  31. Martínez-López, A. L., Carvajal-Millan, E., Lizardi-Mendoza, J., López-Franco, Y. L., Rascón-Chu, A., Salas-Muñoz, E., Barron, C., & Micard, V. (2011). The peroxidase/H2O2 system as a free radical-generating agent for gelling maize bran arabinoxylans: Rheological and structural properties. Molecules, 16(10), 8410–8418.

  32. Martínez-López, A. L., Berlanga-Reyes, E., Micard, V., Rascón-Chu, A., Brown-Bojorquez, F., Sotelo-Cruz, N., et al. (2016). In vitro degradation of covalently cross-linked arabinoxylan hydrogels by bifidobacteria. Carbohydrate Polymers, 144, 76–82.

  33. Martins, J. T., Bourbon, A. I., Pinheiro, A. C., Souza, B. W., Cerqueira, M. A., & Vicente, A. A. (2013). Biocomposite films based on κ-carrageenan/locust bean gum blends and clays: physical and antimicrobial properties. Food and Bioprocess Technology, 6(8), 2081–2092.

  34. Niño-Medina, G., Carvajal-Millán, E., Lizardi, J., Rascon-Chu, A., Marquez-Escalante, J. A., Gardea, A., et al. (2009). Maize processing waste water arabinoxylans: gelling capability and cross-linking content. Food Chemistry, 115(4), 1286–1290.

  35. Petruccelli, S., & Anon, M. C. (1995). Soy protein isolate components and their interactions. Journal of Agricultural and Food Chemistry, 43(7), 1762–1767.

  36. Porfiri, M. C., & Wagner, J. R. (2018). Extraction and characterization of soy hull polysaccharide-protein fractions. Analysis of aggregation and surface rheology. Food Hydrocolloids, 79, 40–47.

  37. Qiu, S., Yadav, M. P., Chen, H., Liu, Y., Tatsumi, E., & Yin, L. (2015). Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch. Carbohydrate Polymers, 115, 246–252.

  38. Ringgenberg, E., Alexander, M., & Corredig, M. (2013). Effect of concentration and incubation temperature on the acid induced aggregation of soymilk. Food Hydrocolloids, 30(1), 463–469.

  39. Saulnier, L., Vigouroux, J., & Thibault, J. F. (1995). Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydrate Research, 272(2), 241–253.

  40. Thevenot, J., Cauty, C., Legland, D., Dupont, D., & Floury, J. (2017). Pepsin diffusion in dairy gels depends on casein concentration and microstructure. Food Chemistry, 223, 54–61.

  41. Truong, V. D., & Daubert, C. R. (2000). Comparative study of large strain methods for assessing failure characteristics of selected food gels. Journal of Texture Studies, 31(3), 335–353.

  42. Ullah, F., Othman, M. B. H., Javed, F., Ahmad, Z., & Akil, H. M. (2015). Classification, processing and application of hydrogels: a review. Materials Science and Engineering: C, 57, 414–433.

  43. Van Vliet, T., Roefs, S. P. F. M., Zoon, P., & Walstra, P. (1989). Rheological properties of casein gels. Journal of Dairy Research, 56, 529–534.

  44. Vilela, J. A. P., Cavallieri, Â. L. F., & Da Cunha, R. L. (2011). The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate–gellan gum. Food Hydrocolloids, 25(7), 1710–1718.

  45. Yang, C., Wang, Y., & Chen, L. (2017). Fabrication, characterization and controlled release properties of oat protein gels with percolating structure induced by cold gelation. Food Hydrocolloids, 62, 21–34.

  46. Yegappan, R., Selvaprithiviraj, V., Amirthalingam, S., & Jayakumar, R. (2018). Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydrate Polymers, 198, 385–400.

  47. Zhang, X., Guo, X., Yang, S., Tan, S., Li, X., Dai, H., et al. (2009). Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers. Journal of Applied Polymer Science, 112(5), 3063–3070.

Download references

Funding

This work was funded by the National Science Foundation of China (Project No. 31771934 and 21576072) and the National Key Technologies R&D Program (No. 2016YFD0400804).

Author information

Correspondence to Xin Jia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Yin, L., Li, J. et al. Development of Corn Fiber Gum–Soybean Protein Isolate Double Network Hydrogels Through Synergistic Gelation. Food Bioprocess Technol (2020). https://doi.org/10.1007/s11947-020-02412-1

Download citation

Keywords

  • Corn fiber gum
  • Double network hydrogel
  • Mechanical property
  • Microstructure
  • Water-holding capacity