Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 5, pp 741–750 | Cite as

Impact of Exogenous Melatonin Application on Chilling Injury in Tomato Fruits During Cold Storage

  • Abbasali JannatizadehEmail author
  • Morteza Soleimani Aghdam
  • Zisheng LuoEmail author
  • Farhang Razavi
Original Paper

Abstract

In this study, the mechanism recruited by exogenous melatonin application at 100 μM for alleviating chilling injury in tomato fruits during cold storage was investigated. Alleviating chilling injury in tomato fruits in response to exogenous melatonin application at 100 μM may ascribe to providing sufficient intracellular ATP occur by higher H-ATPase, Ca-ATPase, cytochrome c oxidase (CCO), and succinate dehydrogenase (SDH) enzymes activity during cold storage. Also, higher unsaturated/saturated fatty acids (unSFA/SFA) ratio owing to higher linoleic and linolenic acids accumulation coincides with lower palmitic, stearic and oleic acids accumulation may be responsible for alleviating chilling injury in tomato fruits in response to exogenous melatonin application at 100 μM, which may occur by higher fatty acid desaturase 3 and 7 (FAD3 and FAD7) genes expression accompanying by lower phospholipase D (PLD) and lipoxygenase (LOX) genes expression and enzymes activity, in addition to providing sufficient intracellular ATP. Therefore, exogenous melatonin application may be a beneficial postharvest procedure for alleviating chilling injury in tomato fruits during cold storage.

Keywords

Fatty acid desaturases Membrane unsaturation Phospholipase D Sufficient intracellular ATP Tomato fruits 

Notes

References

  1. Acevedo, R. M., Maiale, S. J., Pessino, S. C., Bottini, R., Ruiz, O. A., & Sansberro, P. A. (2013). A succinate dehydrogenase flavoprotein subunit-like transcript is upregulated in Ilex paraguariensis leaves in response to water deficit and abscisic acid. Plant Physiology and Biochemistry, 65, 48–54.CrossRefPubMedGoogle Scholar
  2. Aghdam, M. S., & Bodbodak, S. (2013). Physiological and biochemical mechanisms regulating chilling tolerance in fruits and vegetables under postharvest salicylates and jasmonates treatments. Scientia Horticulturae, 156, 73–85.CrossRefGoogle Scholar
  3. Aghdam, M. S., & Bodbodak, S. (2014). Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology, 7(1), 37–53.CrossRefGoogle Scholar
  4. Aghdam, M. S., & Fard, J. R. (2017). Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragariaxanannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry, 221, 1650–1657.CrossRefPubMedGoogle Scholar
  5. Aghdam, M. S., & Mohammadkhani, N. (2014). Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food and Bioprocess Technology, 7(3), 909–914.CrossRefGoogle Scholar
  6. Aghdam, M. S., Jannatizadeh, A., Luo, Z., & Paliyath, G. (2018). Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends in Food Science & Technology, 76, 67–81.CrossRefGoogle Scholar
  7. Aghdam, M. S., Jannatizadeh, A., Nojadeh, M. S., & Ebrahimzadeh, A. (2019a). Exogenous melatonin ameliorates chilling injury in cut anthurium flowers during low temperature storage. Postharvest Biology and Technology, 148, 184–191.CrossRefGoogle Scholar
  8. Aghdam, M. S., Luo, Z., Jannatizadeh, A., Sheikh-Assadi, M., Sharafi, Y., Farmani, B., Fard, J. R., & Razavi, F. (2019b). Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity. Food Chemistry, 275, 549–556.CrossRefPubMedGoogle Scholar
  9. Biswas, P., East, A. R., Hewett, E. W., & Heyes, J. A. (2016). Intermittent warming in alleviating chilling injury—a potential technique with commercial constraint. Food and Bioprocess Technology, 9(1), 1–15.CrossRefGoogle Scholar
  10. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefPubMedGoogle Scholar
  11. Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2011). Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury. Food Chemistry, 127(4), 1777–1783.CrossRefGoogle Scholar
  12. Cao, S., Song, C., Shao, J., Bian, K., Chen, W., & Yang, Z. (2016). Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. Journal of Agricultural and Food Chemistry, 64(25), 5215–5222.CrossRefPubMedGoogle Scholar
  13. Cao, S., Bian, K., Shi, L., Chung, H.-H., Chen, W., & Yang, Z. (2018a). Role of melatonin in cell-wall disassembly and chilling tolerance in cold-stored peach fruit. Journal of Agricultural and Food Chemistry, 66(22), 5663–5670.CrossRefPubMedGoogle Scholar
  14. Cao, S., Shao, J., Shi, L., Xu, L., Shen, Z., Chen, W., & Yang, Z. (2018b). Melatonin increases chilling tolerance in postharvest peach fruit by alleviating oxidative damage. Scientific Reports, 8(1), 806.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cui, G., Sun, F., Gao, X., Xie, K., Zhang, C., Liu, S., & Xi, Y. (2018). Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Planta, 248(1), 69–87.CrossRefPubMedGoogle Scholar
  16. Farneti, B., Alarcon, A. A., Papasotiriou, F. G., Samudrala, D., Cristescu, S. M., Costa, G., Harren, F. J., & Woltering, E. J. (2015). Chilling-induced changes in aroma volatile profiles in tomato. Food and Bioprocess Technology, 8(7), 1442–1454.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gao, H., Zhang, Z. K., Chai, H. K., Cheng, N., Yang, Y., Wang, D. N., Yang, T., & Cao, W. (2016). Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology, 118, 103–110.CrossRefGoogle Scholar
  18. Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M., & Cao, W. (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659–666.CrossRefPubMedGoogle Scholar
  19. García, J. J., López-Pingarrón, L., Almeida-Souza, P., Tres, A., Escudero, P., García-Gil, F. A., Tan, D.-X., Reiter, R. J., Ramírez, J. M., & Bernal-Pérez, M. (2014). Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. Journal of Pineal Research, 56(3), 225–237.CrossRefPubMedGoogle Scholar
  20. He, X., Li, L., Sun, J., Li, C., Sheng, J., Zheng, F., Li, J., Liu, G., Ling, D., & Tang, Y. (2017). Adenylate quantitative method analyzing energy change in postharvest banana (Musa acuminate L.) fruits stored at different temperatures. Scientia Horticulturae, 219, 118–124.CrossRefGoogle Scholar
  21. Hu, W., Yang, H., Tie, W., Yan, Y., Ding, Z., Liu, Y., Wu, C., Wang, J., Reiter, R. J., Tan, D.-X., Shi, H., Xu, B., & Jin, Z. (2017). Natural variation in banana varieties highlights the role of melatonin in postharvest ripening and quality. Journal of Agricultural and Food Chemistry, 65(46), 9987–9994.CrossRefPubMedGoogle Scholar
  22. Jannatizadeh, A. (2019). Exogenous melatonin applying confers chilling tolerance in pomegranate fruit during cold storage. Scientia Horticulturae, 246, 544–549.CrossRefGoogle Scholar
  23. Jannatizadeh, A., Aghdam, M. S., Farmani, B., Maggi, F., & Morshedloo, M. R. (2018). β-Aminobutyric acid treatment confers decay tolerance in strawberry fruit by warranting sufficient cellular energy providing. Scientia Horticulturae, 240, 249–257.CrossRefGoogle Scholar
  24. Jin, P., Zhu, H., Wang, J., Chen, J., Wang, X., & Zheng, Y. (2013). Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress. Journal of the Science of Food and Agriculture, 93(8), 1827–1832.CrossRefPubMedGoogle Scholar
  25. Li, J., Arkorful, E., Cheng, S., Zhou, Q., Li, H., Chen, X., Sun, K., & Li, X. (2018). Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 238, 356–362.CrossRefGoogle Scholar
  26. Liu, H., Song, L., You, Y., Li, Y., Duan, X., Jiang, Y., Joyce, D. C., Ashraf, M., & Lu, W. (2011). Cold storage duration affects litchi fruit quality, membrane permeability, enzyme activities and energy charge during shelf time at ambient temperature. Postharvest Biology and Technology, 60(1), 24–30.CrossRefGoogle Scholar
  27. Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47–55.CrossRefGoogle Scholar
  28. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408.CrossRefPubMedGoogle Scholar
  29. Ma, Q., Zhang, T., Zhang, P., & Wang, Z. Y. (2016). Melatonin attenuates postharvest physiological deterioration of cassava storage roots. Journal of Pineal Research, 60(4), 424–434.CrossRefPubMedGoogle Scholar
  30. Muzi, C., Camoni, L., Visconti, S., & Aducci, P. (2016). Cold stress affects H+-ATPase and phospholipase D activity in Arabidopsis. Plant Physiology and Biochemistry, 108, 328–336.CrossRefPubMedGoogle Scholar
  31. Palma, F., Carvajal, F., Ramos, J. M., Jamilena, M., & Garrido, D. (2015). Effect of putrescine application on maintenance of zucchini fruit quality during cold storage: contribution of GABA shunt and other related nitrogen metabolites. Postharvest Biology and Technology, 99, 131–140.CrossRefGoogle Scholar
  32. Pan, Y.-G., Yuan, M.-Q., Zhang, W.-M., & Zhang, Z.-K. (2017). Effect of low temperatures on chilling injury in relation to energy status in papaya fruit during storage. Postharvest Biology and Technology, 125, 181–187.CrossRefGoogle Scholar
  33. Reiter, R. J., Tan, D. X., & Galano, A. (2014). Melatonin reduces lipid peroxidation and membrane viscosity. Frontiers in Physiology, 5, 377.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tan, D.-X., Manchester, L. C., Liu, X., Rosales-Corral, S. A., Acuna-Castroviejo, D., & Reiter, R. J. (2013). Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. Journal of Pineal Research, 54(2), 127–138.CrossRefPubMedGoogle Scholar
  35. Tiwari, K., & Paliyath, G. (2011). Cloning, expression and functional characterization of the C2 domain from tomato phospholipase Dα. Plant Physiology and Biochemistry, 49(1), 18–32.CrossRefPubMedGoogle Scholar
  36. Yi, C., Qu, H., Jiang, Y., Shi, J., Duan, X., Joyce, D., & Li, Y. (2008). ATP-induced changes in energy status and membrane integrity of harvested litchi fruit and its relation to pathogen resistance. Journal of Phytopathology, 156(6), 365–371.CrossRefGoogle Scholar
  37. Yu, Y., Wang, A., Li, X., Kou, M., Wang, W., Chen, X., Xu, T., Zhu, M., Ma, D., Li, Z., & Sun, J. (2018). Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H–ATPase activity and K/Na homeostasis in sweet potato. Frontiers in Plant Science, 9, 256.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhai, R., Liu, J., Liu, F., Zhao, Y., Liu, L., Fang, C., Wang, H., Li, X., Wang, Z., Ma, F., & Xu, L. (2018). Melatonin limited ethylene production, softening and reduced physiology disorder in pear (Pyrus communis L.) fruit during senescence. Postharvest Biology and Technology, 139, 38–46.CrossRefGoogle Scholar
  39. Zhang, C., & Tian, S. (2010). Peach fruit acquired tolerance to low temperature stress by accumulation of linolenic acid and N-acylphosphatidylethanolamine in plasma membrane. Food Chemistry, 120(3), 864–872.CrossRefGoogle Scholar
  40. Zhang, Y., Huber, D. J., Hu, M., Jiang, G., Gao, Z., Xu, X., Jiang, Y., & Zhang, Z. (2018a). Delay of postharvest browning in litchi fruit by melatonin via the enhancing of antioxidative processes and oxidation repair. Journal of Agricultural and Food Chemistry, 66(28), 7475–7484.CrossRefPubMedGoogle Scholar
  41. Zhang, Y., Ji, H., Yu, J., & Zhang, Z. (2018b). Effect of cold and heat shock treatment on the color development of mature green tomatoes and the roles of their antioxidant enzymes. Food and Bioprocess Technology, 11(3), 705–709.CrossRefGoogle Scholar
  42. Zhao, R., Sheng, J., Lv, S., Zheng, Y., Zhang, J., Yu, M., & Shen, L. (2011). Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biology and Technology, 62(2), 121–126.CrossRefGoogle Scholar
  43. Zhao, Y., Tan, D. X., Lei, Q., Chen, H., Wang, L., Li, Q., Gao, Y., & Kong, J. (2013). Melatonin and its potential biological functions in the fruits of sweet cherry. Journal of Pineal Research, 55(1), 79–88.CrossRefPubMedGoogle Scholar
  44. Zhou, Q., Ma, C., Cheng, S., Wei, B., Liu, X., & Ji, S. (2014a). Changes in antioxidative metabolism accompanying pitting development in stored blueberry fruit. Postharvest Biology and Technology, 88, 88–95.CrossRefGoogle Scholar
  45. Zhou, Q., Zhang, C., Cheng, S., Wei, B., Liu, X., & Ji, S. (2014b). Changes in energy metabolism accompanying pitting in blueberries stored at low temperature. Food Chemistry, 164, 493–501.CrossRefPubMedGoogle Scholar
  46. Zhou, Y., Pan, X., Qu, H., & Underhill, S. J. (2014c). Tonoplast lipid composition and proton pump of pineapple fruit during low-temperature storage and blackheart development. The Journal of Membrane Biology, 247(5), 429–439.CrossRefPubMedGoogle Scholar
  47. Zhou, Y., Pan, X., Qu, H., & Underhill, S. R. (2014d). Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. Journal of Bioenergetics and Biomembranes, 46(1), 59–69.CrossRefPubMedGoogle Scholar
  48. Zhu, Z., Ding, Y., Zhao, J., Nie, Y., Zhang, Y., Sheng, J., & Tang, X. (2016). Effects of postharvest gibberellic acid treatment on chilling tolerance in cold-stored tomato (Solanum lycopersicum L.) fruit. Food and Bioprocess Technology, 9(7), 1202–1209.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Horticultural ScienceImam Khomeini International UniversityQazvinIran
  2. 2.College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food ProcessingZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Department of Horticulture, Faculty of AgricultureUniversity of ZanjanZanjanIran

Personalised recommendations