Advertisement

Production of Propolis Extract Microparticles with Concentrated Pea Protein for Application in Food

  • Cristina Jansen-AlvesEmail author
  • Fernanda D. Krumreich
  • Giovana P. Zandoná
  • Marcia A. Gularte
  • Caroline D. Borges
  • Rui C. Zambiazi
Original Paper
  • 13 Downloads

Abstract

The objectives of this study were to produce microparticles of propolis extract (PE), using concentrated pea protein (CPP) at different concentrations as the encapsulation wall material, and to analyze its physical, morphological, and thermal stability properties. In addition, the microparticles with the highest encapsulation efficiency were incorporated into a cake to verify their impact on the physical characteristics, phenolic compounds content, antioxidant activity, and sensory attributes of cakes. Of the three formulations of CPP tested (2, 4, and 6% weight: volume), microparticles with 2% CPP showed the highest encapsulation efficiency. All the microparticles presented similar morphology, with different roughness and sizes, and with superior thermal stability in relation to the pure PE. The 2% CPP formulation was added during the making of the cake. There was a reduction in the total content of phenolic compounds (< 49%) and in the antioxidant activity (< 44%) of the microparticles after baking. The fortified cake resulted in characteristics of flavor, odor, color, and texture similar to those of the control cake.

Keywords

Propolis extract Phenolic compounds Antioxidant activity Pea protein concentrate Cake 

Notes

Acknowledgements

The authors would like to thank CAPES for granting the doctoral scholarship, FAPERGS for financial support, and CEME-SUL (FURG) for the analysis of SEM.

References

  1. A.O.A.C. (1995). Official method of analysis of AOAC International (16th ed.). Virginia: AOAC International.Google Scholar
  2. Andrade, J. K. S., Denadai, M., De Oliveira, C. S., Nunes, M. L., & Narain, N. (2017). Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Research International, 101, 129–138.CrossRefGoogle Scholar
  3. Bajaj, P. R., Tang, J., & Sablani, S. S. (2015). Pea protein isolates: novel wall materials for microencapsulating flaxseed oil. Food Bioprocess and Technolology, 8(12), 2418–2428.CrossRefGoogle Scholar
  4. Bernardi, S., Favaro-Trindade, C. S., Trindade, M. A., Balieiro, J. C. C., Cavenaghi, A. D., & Contreras-Castillo, C. J. (2013). Italian - type salami with propolis as antioxidant. Italian Journal of Food Science, 25, 433–440.Google Scholar
  5. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebens Wiss Technology (LWT), 28(1), 25–30.CrossRefGoogle Scholar
  6. BRASIL (2001). Ministério da Agricultura, Pecuária e do Abastecimento. Instrução Normativa n° 3, de 19 de janeiro de 2001. Aprova os regulamentos Técnicos de Identidade e Qualidade de Apitoxina, Cera de Abelha, Geléia Real, Geléia Real Liofilizada, Pólen Apícola, Própolis e Extrato de Própolis, conforme consta dos Anexos desta Instrução Normativa. Diário Oficial da União de 23/01/2001, Seção 1, Página 18.Google Scholar
  7. Bruschi, M. L., Cardoso, M. L. C., Lucchesi, M. B., & Gremião, M. P. D. (2003). Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization. International Journal of Pharmaceutics, 264(1-2), 45–55.CrossRefGoogle Scholar
  8. Bufalo, M. C., Ferreira, I., Costa, G., Francisco, V., Liberal, J., Cruz, M. T., & Sforcin, J. M. (2013). Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-kappaB and MAPK activation in macrophages. Journal of Ethnopharmacology, 149(1), 84–92.CrossRefGoogle Scholar
  9. Busch, V. M., Pereyra-Gonzalez, A., Segatin, N., Santagapita, P. R., Ulrih, N. P., & Buera, M. P. (2017). Propolis encapsulation by spray drying: characterization and stability. Lebens Wiss Techn (LWT), 75, 227–235.CrossRefGoogle Scholar
  10. Çam, M., Içyer, N. C., & Erdogan, F. (2014). Pomegranate peel phenolics: microencapsulation, storage stability and potential ingredient for functional food development. Lebens Wiss Technology (LWT), 55(1), 117–123.CrossRefGoogle Scholar
  11. Chao, D., Jung, S., & Aluko, R. E. (2018). Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Science and Emerging Technologies, 45, 179–185.CrossRefGoogle Scholar
  12. Costa, A. M. M., Nunes, J. C., Lima, B. N. B., Pedrosa, C., Calado, V., Torres, A. G., & Pierucci, A. P. T. R. (2015). Effective stabilization of CLA by microencapsulation in pea protein. Food Chemistry, 168, 157–166.CrossRefGoogle Scholar
  13. Da Rosa, C. G., Borges, C. D., Zambiazi, R. C., Rutz, J. K., Da Luz, S. R., Krumreich, F. D., Benvenutti, E. V., & Nunes, M. R. (2014). Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). Lebens Wiss Technology (LWT), 58(2), 527–533.CrossRefGoogle Scholar
  14. da Silva, F. C., Favaro-Trindade, C. S., De Alencar, S. M., Thomazini, M., & Balieiro, J. C. C. (2011). Physicochemical properties, antioxidant activity and stability of spray-dried própolis. Journal of ApiProduct and ApiMedical Science, 3(2), 94–100.CrossRefGoogle Scholar
  15. da Silva, F. C., Da Fonseca, C. R., De Alencar, S. M., Thomazini, M., Balieiro, J. C. D. C., Pittia, P., & Favaro-Trindade, C. S. (2013). Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum arabic and OSA starch-based carrier systems. Food and Bioproducts Processing, 91(1), 28–36.CrossRefGoogle Scholar
  16. do Nascimento, T. G., da Silva, P. F., Azevedo, L. F., da Rocha, L. G., de Moraes Porto, I. C., Moura TF, L. E., Basílio-Júnior, I. D., Grillo, L. A., Dornelas, C. B., Fonseca, E. J., de Jesus Oliveira, E., Zhang, A. T., & Watson, D. G. (2016). Polymeric nanoparticles of Brazilian red propolis extract: preparation, characterization, antioxidant and Leishmanicidal activity. Nanoscale Research Letters, 11(1), 301.  https://doi.org/10.1186/s11671-016-1517-3.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dos Reis, A. S., Diedrich, C., De Moura, C., Pereira, D., Almeida, J. D. F., Da, S., & e al, L. D. (2017). Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at 15 °C. Lebens Wiss Technology (LWT), 76(B), 306–313.CrossRefGoogle Scholar
  18. Elbaz, N. M., Khalil, I. A., Abd-rabou, A. A., & El-Sherbiny, I. M. (2016). Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. International Journal of Biological Macromolecules, 92, 254–269.CrossRefGoogle Scholar
  19. Ezhilarasi, P. N., Indrani, D., Jena, B. S., & Anandharamakrishnan, C. (2014). Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality. Journal of the Science of Food and Agriculture, 94(6), 1116–1123.CrossRefGoogle Scholar
  20. Filomeni, G., Graziani, I., De Zio, D., Dini, L., Centonze, D., Rotilio, G., et al. (2012). Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease. Neurobiology of Aging, 33(4), 767–785.CrossRefGoogle Scholar
  21. Franchin, M., Freires, I. A., Lazarini, J. G., Nani, B. D., Da Cunha, M. G., Colón, D. F., de Alencar, S. M., & Rosalen, P. L. (2017). The use of Brazilian propolis for discovery and development of novel anti-inflammatory drugs. European Journal of Medicinal Chemistry, 154, 49–55.Google Scholar
  22. Gharsallaoui, A., Saurel, R., Chambin, O., & Voilley, A. (2012). Pea (Pisum sativum, L.) protein isolate stabilized emulsions: a novel system for microencapsulation of lipophilic ingredients by spray drying. Food Bioprocess Technology, 5(6), 2211–2221.CrossRefGoogle Scholar
  23. Ghorbanzade, T., Jafari, S. M., Akhavan, S., & Hadavi, R. (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry, 216, 146–152.CrossRefGoogle Scholar
  24. Gómez-estaca, J., Gavara, R., & Hernández-Muñoz, P. (2015). Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science and Emerging Technologies, 29, 302–307.CrossRefGoogle Scholar
  25. Guerin, J., Petit, J., Burgain, J., Borges, F., Bhandari, B., Perroud, C., Desobry, S., Scher, J., & Gaiani, C. (2017). Lactobacillus rhamnosus GG encapsulation by spray-drying: milk proteins clotting control to produce innovative matrices. Journal of Food Engineering, 193, 10–19.CrossRefGoogle Scholar
  26. Hoffmann, J. F., Zandoná, G. P., Santos, P. S. D., Dallmann, C. M., Madruga, F. B., Rombaldi, C. V., & Chaves, F. C. (2017). Stability of bioactive compounds in butiá (Butia odorata) fruit pulp and nectar. Food Chemistry, 237, 638–644.CrossRefGoogle Scholar
  27. Jansen-Alves, C., Fernandes, K. F., Crizel-Cardozo, M. M., Krumreich, F. D., Borges, C. D., & Zambiazi, R. C. (2018). Microencapsulation of propolis in protein matrix using spray drying for application in food systems. Food and Bioprocess Technology, 11(7), 1422–1436.CrossRefGoogle Scholar
  28. Jansen-Alves, C., Maia, D. S. V., Krumreich, F. D., Crizel-Cardoso, M. M., Fioravante, J. B., da Silva, W. P., Borges, C. D., & Zambiazi, R. C. (2019). Propolis microparticles produced with pea protein: characterization and evaluation of antioxidant and antimicrobial activities. Food Hydrocolloids, 87, 703–711.CrossRefGoogle Scholar
  29. Jia, Z., Dumont, M.-J., & Orsat, V. (2016). Encapsulation of phenolic compounds presentin plants using protein matrices. Food Bioscience, 15, 87–104.CrossRefGoogle Scholar
  30. Jing, D., Zhen-Zhen, G., Ze, X., Bo, Z., Ying, Z., & Li, C.-M. (2014). Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Drying Technology, 32, 1157–1166.CrossRefGoogle Scholar
  31. Joye, I. J., & Mcclements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinionin Colloid InterfaceScience, 19(5), 417–427.CrossRefGoogle Scholar
  32. Lin, M., Tay, S. H., Yang, H., Yang, B., & Li, H. (2017). Formulation optimization of lecithin-enhanced pickering emulsions stabilized by chitosan nanoparticles for hesperidin encapsulation. Food Hydrocolloids, 69, 440–449.CrossRefGoogle Scholar
  33. Mascheroni, E., Fuenmayor, C. A., Cosio, M. S., Di Silvestro, G., Piergiovanni, L., Mannino, S., & Schiraldi, A. (2013). Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydrate Polymers, 98(1), 17–25.CrossRefGoogle Scholar
  34. Mendanha, D. V., Ortiz, S. E. M., Favaro-Trindade, C. S., Mauri, A., Monterrey-Quintero, E. S., & Thomazini, M. (2009). Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Research International, 42(8), 1099–1104.CrossRefGoogle Scholar
  35. Nooshkam, M., Varidi, M., & Bashash, M. (2019). Review. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry, 275, 644–660.CrossRefGoogle Scholar
  36. Pang, S. F., Yusoff, M. M., & Gimbun, J. (2014). Assessment of phenolic compounds stability and retention during spray drying of Orthosiphon stamineus extracts. Food Hydrocolloids, 37, 159–165.CrossRefGoogle Scholar
  37. Pasrija, D., Ezhilarasi, P. N., Indrani, D., & Anandharamakrishnan, C. (2015). Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. Lebens Wiss Technology (LWT), 64(1), 289–296.CrossRefGoogle Scholar
  38. Pellati, F., Orlandinia, G., Pinetti, D., & Benvenuti, S. (2011). HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. Journal of Pharmaceutical and Biomedical Analysis, 55(5), 934–948.CrossRefGoogle Scholar
  39. Quirino Lacerda, E. C., De Araújo, C. V. M., Monteiroc, M., Finotellid, P. V., Guedes Torresa, A., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500–510.CrossRefGoogle Scholar
  40. Rocha, G. A., Fávaro-Trindade, C. S., & Grosso, C. R. F. (2012). Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food and Bioproducts Processing, 90(1), 37–42.CrossRefGoogle Scholar
  41. Silva, J. C., Rodrigues, S., Feás, X., & Estevinho, L. M. (2012). Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food and Chemical Toxicology, 50(5), 1790–1795.CrossRefGoogle Scholar
  42. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.CrossRefGoogle Scholar
  43. Souza, J.P.B., Tacon, L.A., Correia, C. C., Bastos, J. K., & Freitas, L.A.P. (2007). Spray-dried propolis extract, II: Prenylated components of green propolis. Pharmazie, 62, 488–492.Google Scholar
  44. Spinelli, S., Conte, A., Lecce, L., Incoronato, A. L., & Nobile, A. D. M. (2015). Microencapsulated propolis to enhance the antioxidant properties of fresh fish burgers. Journal of Food Process Engineering, 38(6), 527–535.CrossRefGoogle Scholar
  45. Szliszka, E., Czuba, Z. P., Domino, M., Mazur, B., Zydowicz, G., & Krol, W. (2009). Ethanolic extract of propolis (EEP) enhances the apoptosis- inducing potential of TRAIL in cancer cells. Moleculas, 14(2), 738–754.CrossRefGoogle Scholar
  46. Trifković, K. T., Milašinović, N. Z., Djordjević, V. B., Krušić, M. T., Knežević-Jugović, Z. D., Nedović, V. A., et al. (2014). Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols. Carbohydrate Polymers, 111, 901–907.CrossRefGoogle Scholar
  47. Von Staszewski, M., Jara, F. L., Ruiz, A. L. T. G., Jagus, R. J., Carvalho, J. E., & Pilosof, A. M. R. (2012). Nanocomplex formation between b-lactoglobulin or caseino macropeptide and green tea polyphenols: impact on protein gelation and polyphenols antiproliferative activity. Journal of Functional Foods, 4(4), 800–809.CrossRefGoogle Scholar
  48. Xiaojing, L., Na, J., Chao, Q., Mingtao, X., Liu, X., & Qingjie, S. (2015). The effect of peanut protein nanoparticles on characteristics of protein- and starch-based nanocomposite films: a comparative study. Industrial Crops and Products, 77, 565–574.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Post Graduate Program of Food Science and Technology, Department of Agroindustrial Science and Technology, Faculty of Agronomy Eliseu MacielFederal University of PelotasPelotasBrazil
  2. 2.Center of Chemical, Pharmaceuticals and Food SciencesFederal University of PelotasPelotasBrazil

Personalised recommendations