Food and Bioprocess Technology

, Volume 12, Issue 4, pp 575–586 | Cite as

Effect of the Compositional Factors and Processing Conditions on the Creaming Reaction During Process Cheese Manufacturing

  • Sonja Lenze
  • Alan Wolfschoon-Pombo
  • Katrin Schrader
  • Ulrich KulozikEmail author
Original Paper


Selected influencing factors in processed cheese making (protein and fat content, fat globule size, and rework addition) affecting the physical changes known as “creaming” were investigated for their effect on this multistage structure formation reaction. The creaming curve (viscosity vs. time) shows four typical stages: an initiation phase, a first exponential stage, a plateau, and a second exponential phase. Increasing the protein content from 10 to 17% (w/w) accelerated the reaction. Light microscopy showed that the fat content (0–20%) affected the shape of the creaming curve as well and it was shown that a fat level of 15–20% is required for the characteristic creaming curve to occur. Moreover, modifications in the initial milkfat globule size (3.7 μm down to 1.1 μm) by means of upstream homogenization (0–250/50 bar) accelerated the exponential phase and modified the shape of the creaming curve, shortening the initiation and plateau phases. The reaction started earlier with decreasing incoming fat globule size, and the slope was steeper. When fat was present in the system, it was not only the content, but the milkfat globule size which dictates the viscosity change and shape of the curve. The addition of rework dramatically affects the structure formation process, rework probably acting as a catalyst accelerating the reaction. However, protein polymerization was found to be constant during the entire course of the reaction suggesting that weaker physical bonds are responsible for the structuring of the matrix.


Multistage structure formation Creaming reaction Processed cheese Emulsion Protein network 



The authors would like to thank Hochland AG, Heimenkirch, Germany, for the financial and technical support to parts of this study.


  1. Aguilera, J. M., & Kinsella, J. E. (1991). Compression strength of dairy gels and microstructural interpretation. Journal of Food Science, 56(5), 1224–1228.CrossRefGoogle Scholar
  2. Barth, A. P., Tormena, C. F., & Viotto, W. H. (2017). pH influences hydrolysis of sodium polyphosphate in dairy matrices and the structure of processed cheese. Journal of Dairy Science, 100(11), 8735–8743.CrossRefGoogle Scholar
  3. Berger, W., Klostermeyer, H., Merkenich, K., & Uhlmann, G. (1995). Die Schmelzkäseherstellung. Heidelberg: Brausdruck GmbH.Google Scholar
  4. Bönisch, M. P., Lauber, S., & Kulozik, U. (2004). Effect of ultra-high temperature treatment on the enzymatic cross-linking of micellar casein and sodium caseinate by transglutaminase. Journal of Food Science, 69(8), 398–404.CrossRefGoogle Scholar
  5. Caric, M., & Kalab, M. (1993). Processed cheese products. In P. F. Fox (Ed.), Cheese: chemistry, physics and microbiology (pp. 467–505). London: Elsevier Applied Science.CrossRefGoogle Scholar
  6. Caric, M., Gantar, M., & Kalab, M. (1985). Effects of emulsifiying agents on the microstructure and other characteristics of process cheese - a review. Food Microstructure, 4, 297–312.Google Scholar
  7. Černiková, M., Nebesářova, J., Salek, R. N., Popková, R., & Buňka, F. (2018). The effect of rework content addition on the microstructure and viscoelastic properties of processed cheese. Journal of Dairy Science, 101(4), 2956–2962.CrossRefGoogle Scholar
  8. Chambre, M., & Daurelles, J. (2000). Processed cheese. In A. Eck & J.-C. Gillis (Eds.), Cheesemaking (pp. 641–657). Paris: Technique et Documentation.Google Scholar
  9. Cunha, C. R., Grimaldi, R., Alcântara, M. R., & Viotto, W. H. (2013). Effect of the type of fat on rheology, functional properties and sensory acceptance of spreadable cheese analogue. International Journal of Dairy Technology, 66(1), 54–62.CrossRefGoogle Scholar
  10. Dalsgaard, T. K., Otzen, D., Nielsen, J. H., & Larsen, L. B. (2007). Changes in structures of milk proteins upon photo-oxidation. Journal of Agricultural and Food Chemistry, 55(26), 10968–10976.CrossRefGoogle Scholar
  11. Dimitreli, G., & Thomareis, A. S. (2004). Effect of temperature and chemical com-position on processed cheese apparent viscosity. Journal of Food Engineering, 64(2), 265–271.CrossRefGoogle Scholar
  12. Ennis, M. P., O’Sullivan, M., & Mulvihill, D. M. (1998). A study of the hydration behavior of rennet caseins in calcium chelating salt solution using a rheological approach. Food Hydrocolloids, 12(4), 451–457.CrossRefGoogle Scholar
  13. Fox, P. F., O’Connor, T. P., & Mc Sweeny, P. L. H. (1996). Cheese: physical, biochemical and nutritional aspects. Advances in Food and Nutrition Research, 39, 163–328.CrossRefGoogle Scholar
  14. Fox, P. F., Guinee, T. P., Cogan, T. M., & Mc Sweeney, P. L. H. (2000). Processed cheese and substitute or imitation cheese products. Fundamentals of cheese science (pp. 429–451). Gaithersburg: Aspen Publ., Inc.Google Scholar
  15. Fu, W., Watanabe, Y., Inoue, K., Moriguchi, N., Fusa, K., Yanagisawa, Y., Mutoh, T., & Nakamura, T. (2018a). Effects of pre-cooked cheeses of different emulsifying conditions on mechanical properties and microstructure of processed cheese. Food Chemistry, 245, 47–52.CrossRefGoogle Scholar
  16. Fu, W., Watanabe, Y., Satoh, H., Inoue, K., Moriguchi, N., Fusa, K., Yanagisawa, Y., Mutoh, T., & Nakamura, T. (2018b). Effects of emulsifying conditions on creaming effect, mechanical properties and microstructure of processed cheese using a rapid visco-analyzer. Bioscience, Biotechnology, and Biochemistry, 82(3), 476–483.CrossRefGoogle Scholar
  17. Guinee, T. P. (2003). The role of protein in cheese and cheese products. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry, vol. 1, proteins, part B (pp. 1029–1174). New York, Boston, Dordrecht, London, Moscow: Kluwer Academic/Plenum Publ.Google Scholar
  18. Guinee, T. P. (2009). The role of dairy ingredients in processed cheese products. In: M. Corredig (ed.), Dairy-derived ingredients: food and nutraceutical uses (Chapter 20, 507–538). Woodhead Publishing Ltd., UK.Google Scholar
  19. Guinee, T. P., & O’Kennedy, B. T. (2009). The effect of calcium content of Cheddar-style cheese on the biochemical and rheological properties of processed cheese. Dairy Science and Technology, 89(3-4), 317–333.CrossRefGoogle Scholar
  20. Guinee, T. P., Caric, M., & Kalab, M. (2004). Pasteurized processed cheese and substitute/imitation cheese products. In P. F. Fox (Ed.), Cheese: chemistry, physics and microbiology (pp. 349–394). Elsevier Academic Press.Google Scholar
  21. Heertje, I. (1993). Structure and function of food products: a review. Food Structure, 12, 343–364.Google Scholar
  22. Henle, T., Schwarzenbolz, U., & Klostermeyer, H. (1996). Irreversible crosslinking of casein during storage of UHT-treated skim milk. International Dairy Federation, Brussels, Bulletin, 9602, 290–299.Google Scholar
  23. Kalab, M., Yun, J., & Yiu, S. H. (1987). Textural properties and microstructure of process cheese food rework. Food Microstructure, 6, 181–192.Google Scholar
  24. Kapoor, R., & Metzger, L. E. (2005). Small-scale manufacture of process cheese using a rapid visco analyzer. Journal of Dairy Science, 88(10), 3382–3391.CrossRefGoogle Scholar
  25. Kapoor, R., & Metzger, L. E. (2008). Process cheese: scientific and technological aspects - a review. Comprehensive Reviews in Food Science and Food Safety, 7(2), 194–214.CrossRefGoogle Scholar
  26. Kapoor, R., Lehtola, P., & Metzger, L. E. (2004). Comparison of pilot-scale and rapid visco analyzer process cheese manufacture. Journal of Dairy Science, 87(9), 2813–2821.CrossRefGoogle Scholar
  27. Kawasaki, Y. (2008). Influence of creaming on the properties of processed cheese and changes in the structure of casein during cheese making. Milchwissenschaft, 63(2), 149–152.Google Scholar
  28. Kirchmeier, O. (1978). Der besondere Zustand von Caseinatschmelzen. Zeitschrift für die Lebensmittel-Untersuchung und Forschung, 166(5), 293–297.CrossRefGoogle Scholar
  29. Klostermeyer, H., & Buchheim, W. (1988). Die Mikrostruktur von Schmelzkäseerzeugnissen. Kieler Milchwirtschaftliche Forschungsberichte, 40(4), 219–231.Google Scholar
  30. Lauber, S., Henle, T., & Klostermeyer, H. (2000). Relationship between the crosslinking of caseins by transglutaminase and the gel strength of yoghurt. European Food Research and Technology, 210(5), 305–309.CrossRefGoogle Scholar
  31. Lee, B. O., Paquet, D., & Alais, C. (1979). Etude bioquimique de la fonte des fromages. I.Mesure de la peptisation. Le Lait, 59, 589/590) 589–589/590) 596.CrossRefGoogle Scholar
  32. Lee, S. K., Buwalda, R. J., Euston, S. R., Foegeding, E. A., & McKenna, A. B. (2003). Changes in the rheology and microstructure of processed cheese during cooking. Food Science and Technology, 36(3), 339–345.Google Scholar
  33. Lee, S. K., Klostermeyer, H., & Anema, S. G., (2015). Effect of protein-in-water concentration on the properties of model processed cheese. Int Dairy J, 50, 15–23.
  34. Marchesseau, S., Gastaldi, E., Lagaude, A., & Cuq, J. L. (1997). Influence of protein interactions and microstructure of process cheese. Journal of Dairy Science, 80(8), 1483–1489.CrossRefGoogle Scholar
  35. McIntyre, I., O´Sullivan, M., & O`Riordan, D. (2017). Monitoring the progression of calcium and protein solubilisation as affected by calcium chelators during small-scale manufacture of casein-based matrices. Food Chemistry, 237, 597–604.
  36. Mizuno, R., & Lucey, J. A. (2005). Effects of emulsifying salts on the turbidity and calcium phosphate protein interactions in casein micelles. Journal of Dairy Science, 88(9), 3070–3078.CrossRefGoogle Scholar
  37. Panouillé, M., Nicolai, T., & Durand, D. (2004). Heat induced aggregation and gelation of casein submicelles. International Dairy Journal, 14(4), 297–303.CrossRefGoogle Scholar
  38. Panouillé, M., Durand, D., Nicolai, T., Larquet, E., & Boisset, N. (2005). Aggregation and gelation of micellar casein particles. Journal of Colloid and Interface Science, 287(1), 85–93.CrossRefGoogle Scholar
  39. Ramel, P. R., & Marangoni, A. (2018). Processed cheese as a polymer matrix composite: a particle toolkit for the replacement of milk fat with canola oil in processed cheese. Food Research International, 107, 110–118.CrossRefGoogle Scholar
  40. Rayan, A. A., Kalab, M., & Ernstrom, C. A. (1980). Microstructure and rheology of process cheese. Scanning Electron Microscopy, III, 635–643.Google Scholar
  41. Sedlmeyer, F., Daimer, K., Rademacher, B., & Kulozik, U. (2003a). Influence of the composition of milk protein k/i.hybrid carrageenan gels on product properties. Colloids and Surfaces B: Biointerfaces, 31(1–4), 13–20.CrossRefGoogle Scholar
  42. Sedlmeyer, F., Daimer, K., Rademacher, B., & Kulozik, U. (2003b). Investigations on mixed systems containing milk proteins, starch and carrageenan. Proceedings 3rd International Symposium on Food Rheology and Structure, Zurich/Switzerland, 489–490.Google Scholar
  43. Shirashoji, N., Jaeggi, J. J., & Lucey, J. A. (2006). Effect of trisodium citrate concentration and cooking time on the physicochemical properties of pasteurized process cheese. Journal of Dairy Science, 89(1), 15–28.CrossRefGoogle Scholar
  44. Sutheerawattananonda, M., Fulcher, R. G., Martin, F. B., & Bastian, E. D. (1997). Fluorescence image analysis of process cheese manufactured with trisodium citrate and sodium chloride. Journal of Dairy Science, 80(4), 620–627.CrossRefGoogle Scholar
  45. Torosantucci, R., Schöneich, C., & Jiskoot, W. (2014). Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharmaceutical Research, 31(3), 541–553.CrossRefGoogle Scholar
  46. van Vliet, T., & Dentener-Kikkert, A. (1982). Influence of the composition of the milk fat globule membrane on the rheological properties of acid milk gels. Netherlands Milk and Dairy Journal, 36, 261–265.Google Scholar
  47. VDLUFA-Methodenbuch. (1985). Handbuch der landwirtschaftlichen Versuchs- und Untersuchungsmethodik. Darmstadt: VDLUFA-Verlag.Google Scholar
  48. Walter, A. W. (1995). Protein-Quervernetzungsreaktionen: Identifizierung individueller Reaktionsprodukte und Untersuchungen zum Einfluss reduzierender Kohlenhydrate. Ph.D. thesis, Technische Universität München, Shaker Verlag, Aachen, Germany.Google Scholar
  49. Weiserová, E., Doudová, L., Galiová, L., Žák, Michálek, J., Janiš, R., & Buňka, F. (2011). The effect of combinations of sodium phosphate in binary mixtures on selected texture parameters of processed cheese spreads. International Dairy Journal, 21(12), 979–986.CrossRefGoogle Scholar
  50. Wiles, P. G., Gray, I. K., & Kissling, R. C. (1998). Routine analysis of proteins by Kjeldahl and Dumas methods: review and interlaboratory study using dairy proteins. Journal of AOAC International, 81(3), 620–632.Google Scholar
  51. Zhang, W., Xiao, S., & Ahn, D. U. (2013). Protein oxidation. Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition, 53(11), 1191–1201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sonja Lenze
    • 1
    • 2
  • Alan Wolfschoon-Pombo
    • 3
  • Katrin Schrader
    • 4
  • Ulrich Kulozik
    • 1
    Email author
  1. 1.Chair of Food and Bioprocess EngineeringTechnical University of MunichFreisingGermany
  2. 2.Hochland AGHeimenkirchGermany
  3. 3.Kraft Foods R&D Inc./Mondelez InternationalMunichGermany
  4. 4.Department of Safety and Quality of Milk and Fish ProductsMax-Rubner-InstituteKielGermany

Personalised recommendations