Effect of High Hydrostatic Pressure (HHP) Processing on Immunoreactivity and Spatial Structure of Peanut Major Allergen Ara h 1

  • 33 Accesses


Ara h 1 is recognized as a major peanut allergen. The effects of high hydrostatic pressure (HHP) on the immunoreactivity and structure of Ara h 1 were investigated in this study. The immunoreactivity of Ara h 1 was considerably reduced (P < 0.01) after HHP treatment (≥ 400 MPa) with the increase of pressure holding time. The maximum reduction of 74.32% was achieved at 600 MPa for 1200 s. The particle size and molecular weight of Ara h 1 increased, and the secondary/tertiary structure changed markedly. The decrease of the immunoreactivity of Ara h 1 was mainly due to the changes in conformation (especially the tertiary structure) and the formation of new multimers, resulting in the inactivation of immunoreactive sites. Results indicate that HHP technology has the potential to be applied to the preparation of hypoallergenic peanut products.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Arndt, C., Koristka, S., Feldmann, A., & Bachmann, M. (2012). Native polyacrylamide gels. Methods in Molecular Biology (Clifton, N.J.), 869, 49-53.

  2. Beyer, K. B., Morrow, E., Li, X. M., Bardina, L., Bannon, G. A., Burks, A. W., & Sampson, H. A. (2001). Effects of cooking methods on peanut allergenicity. Journal of Allergy and Clinical Immunology, 107(6), 1077–1081.

  3. Blanc, F., Vissers, Y. M., Adel-Patient, K., Rigby, N. M., Mackie, A. R., Gunning, A. P., & Mills, E. N. (2011). Boiling peanut Ara h 1 results in the formation of aggregates with reduced allergenicity. Molecular Nutrition & Food Research, 55(12), 1887–1894.

  4. Burks, A. W., & Fuchs, R. L. (1995). Assessment of the endogenous allergens in glyphosate-tolerant and commercial soybean varieties. The Journal of Allergy and Clinical Immunology, 96(1), 1008–1010.

  5. De Maria, S., Ferrari, G., & Maresca, P. (2016). Effects of high hydrostatic pressure on the conformational structure and the functional properties of bovine serum albumin. Innovative Food Science & Emerging Technologies, 33, 67–75.

  6. Dhakal, S., Liu, C. Q., Zhang, Y., Roux, K. H., Sathe, S. K., & Balasubramaniam, V. M. (2014). Effect of high pressure processing on the immunoreactivity of almond milk. Food Research International, 62, 215–222.

  7. Ditto, A. M., Neilsen, C. V., Neerukonda, S., Shreffler, W. G., & Bryce, P. J. (2010). Clinical reactivity to raw peanut correlates with IgE binding to conformational epitopes of Ara h 1: a case report. Allergy, 65(11), 1485–1486.

  8. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry & Biophysics, 82(1), 70–77.

  9. Estrada-Girón, Y., Swanson, B. G., & Barbosa-Cánovas, G. V. (2005). Advances in the use of high hydrostatic pressure for processing cereal grains and legumes. Trends in Food Science & Technology, 16(5), 194–203.

  10. Hildebrandt, S., Steinhart, H., & Paschke, A. (2008). Comparison of different extraction solutions for the analysis of allergens in hen’s egg. Food Chemistry, 108(3), 1088–1093.

  11. Huang, H.-W., Hsu, C.-P., Yang, B. B., & Wang, C.-Y. (2014a). Potential utility of high-pressure processing to address the risk of food allergen concerns. Comprehensive Reviews in Food Science and Food Safety, 13(1), 78–90.

  12. Huang, H.-W., Yang, B. B., & Wang, C.-Y. (2014b). Effects of high pressure processing on immunoreactivity and microbiological safety of crushed peanuts. Food Control, 42, 290–295.

  13. Jiménez-Saiz, R., Benedé, S., Molina, E., & López-Expósito, I. (2015). Effect of processing technologies on the allergenicity of food products. Critical Reviews in Food Science and Nutrition, 55(13), 1902–1917.

  14. Johnson, P. E., Van der Plancken, I., Balasa, A., Husband, F. A., Grauwet, T., Hendrickx, M., & Mackie, A. R. (2010). High pressure, thermal and pulsed electric-field-induced structural changes in selected food allergens. Molecular Nutrition & Food Research, 54(12), 1701–1710.

  15. Koppelman, S. J., Bruijnzeelkoomen, C. A., Hessing, M., & de Jongh, H. H. (1999). Heat-induced conformational changes of Ara h 1, a major peanut allergen, do not affect its allergenic properties. Journal of Biological Chemistry, 274(8), 4770–4777.

  16. Koppelman, S. J., Vlooswijk, R. A. A., Knippels, L. M. J., Hessing, M., Knol, E. F., Van Reijsen, F. C., & Bruijnzeel-Koomen, C. A. F. M. (2001). Quantification of major peanut allergens Ara h 1 and Ara h 2 in the peanut varieties Runner, Spanish, Virginia, and Valencia, bred in different parts of the world. Allergy, 56(2), 132–137.

  17. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

  18. Li, Y., Yang, W., Chung, S. Y., Chen, H., Ye, M., Teixeira, A. A., & Shriver, S. (2013). Effect of pulsed ultraviolet light and high hydrostatic pressure on the antigenicity of almond protein extracts. Food & Bioprocess Technology, 6(2), 431–440.

  19. Li, H., Jia, Y., Peng, W., Zhu, K., Zhou, H., & Guo, X. (2018). High hydrostatic pressure reducing allergenicity of soy protein isolate for infant formula evaluated by ELISA and proteomics via Chinese soy-allergic children’s sera. Food Chemistry, 269, 311–317.

  20. Long, F., Yang, X., Sun, J., Zhong, Q., Wei, J., Qu, P., & Yue, T. (2016). Effects of combined high pressure and thermal treatment on the allergenic potential of peanut in a mouse model of allergy. Innovative Food Science & Emerging Technologies, 35, 133–138.

  21. Maleki, S. J., Kopper, R. A., Shin, D. S., Park, C. W., Compadre, C. M., Sampson, H., & Bannon, G. A. (2000). Structure of the major peanut allergen Ara h 1 may protect IgE-binding epitopes from degradation. The Journal of Immunology, 164(11), 5844–5849.

  22. San Martín, M. F., Barbosa-Cánovas, G. V., & Swanson, B. G. (2002). Food processing by high hydrostatic pressure. Critical Reviews in Food Science & Nutrition, 42(6), 627.

  23. Meng, X., Bai, Y., Gao, J., Li, X., & Chen, H. (2017). Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine beta-lactoglobulin. Food Chemistry, 219, 290–296.

  24. Meng, X., Li, X., Wang, X., Gao, J., Yang, H., & Chen, H. (2016). Potential allergenicity response to structural modification of irradiated bovine alpha-lactalbumin. Food & Function, 7(7), 3102–3110.

  25. Montserrat, M., Mayayo, C., Sanchez, L., Calvo, M., & Perez, M. D. (2013). Study of the thermoresistance of the allergenic Ara h1 protein from peanut (Arachis hypogaea). Journal of Agricultural and Food Chemistry, 61(13), 3335–3340.

  26. Perreault, V., Henaux, L., Bazinet, L., & Doyen, A. (2017). Pretreatment of flaxseed protein isolate by high hydrostatic pressure: impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chemistry, 221, 1805–1812.

  27. Rahaman, T., Vasiljevic, T., & Ramchandran, L. (2016). Effect of processing on conformational changes of food proteins related to allergenicity. Trends in Food Science & Technology, 49, 24–34.

  28. Rastogi, N. K., Raghavarao, K. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science & Nutrition, 47(1), 69–112.

  29. Sen, M., Kopper, R., Pons, L., Abraham, E. C., Burks, W., & Bannon, G. A. (2002). Protein structure plays a critical role in peanut allergen Ara h2 stability and may determine immunodominant IgE binding epitopes. Journal of Allergy and Clinical Immunology, 109(1), S300–S300.

  30. Shin, D. S., Compadre, C. M., Maleki, S. J., Kopper, R. A., Sampson, H., Huang, S. K., & Bannon, G. A. (1998). Biochemical and structural analysis of the IgE binding sites on Ara h1, an abundant and highly allergenic peanut protein. Journal of Biological Chemistry, 273(22), 13753–13759.

  31. Sicherer, S. H., & Sampson, H. A. (2007). Peanut allergy: emerging concepts and approaches for an apparent epidemic. Journal of Allergy and Clinical Immunology, 120(3), 491–503.

  32. Sicherer, S. H., & Sampson, H. A. (2018). Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. Journal of Allergy and Clinical Immunology, 141(1), 41–58.

  33. Sun-Waterhouse, D., Zhao, M., & Waterhouse, G. I. N. (2014). Protein modification during ingredient preparation and food processing: approaches to improve food processability and nutrition. Food and Bioprocess Technology, 7(7), 1853–1893.

  34. Wang, K. Q., Luo, S. Z., Zhong, X. Y., Cai, J., Jiang, S. T., & Zheng, Z. (2017). Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation. Food Chemistry, 214, 393–399.

  35. Wang, J. M., Yang, X. Q., Yin, S. W., Zhang, Y., Tang, C. H., Li, B. S., & Guo, J. (2011). Structural rearrangement of ethanol-denatured soy proteins by high hydrostatic pressure treatment. Journal of Agricultural and Food Chemistry, 59(13), 7324–7332.

  36. Wang, X. S., Tang, C. H., Li, B. S., Yang, X. Q., Li, L., & Ma, C. Y. (2008). Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates. Food Hydrocolloids, 22(4), 560–567.

  37. Wu, Z., Lian, J., Zhao, R., Li, K., Li, X., Yang, A., & Chen, H. (2017). Ara h 2 cross-linking catalyzed by MTGase decreases its allergenicity. Food & Function, 8(3), 1195–1203.

  38. Wu, Z., Yan, F., Wei, X., Li, X., Tong, P., Yang, A., & Chen, H. (2015). Purification and recombinant expression of major peanut allergen Ara h 1. Preparative Biochemistry & Biotechnology, 45(5), 438–446.

  39. Yang, W. W., Mwakatage, N. R., Goodrich-Schneider, R., Krishnamurthy, K., & Rababah, T. M. (2011). Mitigation of major peanut allergens by pulsed ultraviolet light. Food and Bioprocess Technology, 5(7), 2728–2738.

  40. Yang, J., Dunker, A. K., Powers, J. R., Clark, S., & Swanson, B. G. (2001). Beta-lactoglobulin molten globule induced by high pressure. Journal of Agricultural and Food Chemistry, 49(7), 3236–3243.

  41. Zhao, Z.-K., Mu, T.-H., Zhang, M., & Richel, A. (2018). Chemical forces, structure, and gelation properties of sweet potato protein as affected by pH and high hydrostatic pressure. Food and Bioprocess Technology, 11(9), 1719–1732.

  42. Zhou, H., Wang, C., Ye, J., Chen, H., Tao, R., & Cao, F. (2016). Effects of high hydrostatic pressure treatment on structural, allergenicity, and functional properties of proteins from ginkgo seeds. Innovative Food Science & Emerging Technologies, 34, 187–195.

  43. Zhu, S. M., Lin, S. L., Ramaswamy, H. S., Yu, Y., & Zhang, Q. T. (2017). Enhancement of functional properties of rice bran proteins by high pressure treatment and their correlation with surface hydrophobicity. Food and Bioprocess Technology, 10(2), 317–327.

Download references

Author information

Correspondence to Xueping Ling or Yuanpeng Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Di Pan and Biling Tang contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Tang, B., Liu, H. et al. Effect of High Hydrostatic Pressure (HHP) Processing on Immunoreactivity and Spatial Structure of Peanut Major Allergen Ara h 1. Food Bioprocess Technol 13, 132–144 (2020).

Download citation


  • Ara h 1
  • High hydrostatic pressure (HHP)
  • Structure
  • Immunoreactivity
  • Mulitimer