Advertisement

Encapsulation of Pomegranate Seed Oil by Emulsification Followed by Spray Drying: Evaluation of Different Biopolymers and Their Effect on Particle Properties

  • Talita A. ComunianEmail author
  • Ana Gabriela da Silva Anthero
  • Eveling Oliveira Bezerra
  • Izabel Cristina Freitas Moraes
  • Miriam Dupas Hubinger
Original Paper
  • 52 Downloads

Abstract

Pomegranate seed oil (PSO) is rich in bioactive compounds and is susceptible to oxidation. This research sought to encapsulate PSO in conventional and Pickering emulsions using whey protein isolate (WPI) microgels, WPI in its natural form, gum Arabic (GA), and WPI combinations with GA, maltodextrin (MD), and modified starch (Capsul®) as aqueous phase/emulsifier followed by spray drying. Emulsions with 1.39–2.55 μm droplet size, low viscosity (1.47–3.96 mPa s), and final interfacial tensions of 4.21–9.97 mN m−1 were obtained. All formulations were stable with the Turbiscan stability index between 4.57% and 12.95% at 24 h. Emulsions resulted in particles with encapsulation efficiency and yield of 56.28–73.83% and 28.07–93.99%, respectively. PSO powders had small particle sizes (9.86–22.60 μm), high glass transition temperature (103.24–121.62 °C), and oxidative stability index (OSI) of 2.71 h and in the range of 4.11–21.23 h for non-encapsulated and encapsulated PSO, respectively. All formulations promoted the oil oxidative protection when compared with the non-encapsulated one. Treatments presented feasible values of Aw, moisture, solubility, and hygroscopicity for handling and storage of the powders. WPI, WPI:Capsul®, and Pickering treatments promoted greater protection of the encapsulated oil; however, the combination of WPI with modified starch was considered the best wall material, allowing protection of PSO and future applications in the food industry.

Keywords

Protection Whey protein Pickering emulsion Glass transition temperature Microgels Polyunsaturated fatty acids 

Notes

Acknowledgments

The authors thank FAPESP (Fundação de Auxílio à Pesquisa do Estado de São Paulo) for scholarship conceded to Talita A. Comunian (Process 2018/01710-5) and to Ana Gabriela da Silva Anthero (Process 2018/02132-5), CNPq for scholarship conceded to Eveling Oliveira Bezerra (Process 118279/2018-01), De Wit Specialty Oils for the pomegranate oil donation, Fonterra for WPI donation, Ingredion for maltodextrin and modified starch donation and Centro de Microscopia Eletrônica (Universidade Federal de São Paulo, Escola Paulista de Medicina - UNIFESP) for assistance with transmission electron microscopy.

References

  1. Aghbashlo, M., Mobli, H., Madadlou, A., & Rafice, S. (2013). Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food and Bioprocess Technology, 6, 1561–1569.CrossRefGoogle Scholar
  2. Amin, M. C. I. M., Abadi, A. G., & Katas, H. (2014). Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydrate Polymers, 99, 180–189.CrossRefGoogle Scholar
  3. Barbosa-Cánovas, G. V., & Juliano, P. (2005). Physical and chemical properties of food powders. In C. Onwulata (Ed.), Encapsulated and powdered foods (pp. 39–71). Taylor & Francis Group, Boca Raton: CRC Press LLC.CrossRefGoogle Scholar
  4. Belscak-Cvitanovic, A., Levic, S., Kalusevic, A., Spolkaric, I., Dordevic, V., Komes, D., Mrsic, G., & Nedovic, V. (2015). Efficiency assessment of natural biopolymers as encapsulants of green tea (Camellia sinensis L.) bioactive comounds by spray drying. Food and Bioprocess Technology, 8, 2444–2460.CrossRefGoogle Scholar
  5. Bhandari, B. R., & Howes, T. (1999). Implication of glass transition for the drying and stability of dried foods. Journal of Food Engineering, 40, 71–79.CrossRefGoogle Scholar
  6. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.CrossRefGoogle Scholar
  7. Bryant, C. M., & McClements, D. J. (2000). Optimizing preparation conditions for heat-denatured whey protein solutions to be used as cold-gelling ingredients. Journal of Food Science, 65, 259–263.CrossRefGoogle Scholar
  8. Bucurescu, A., Blaga, A. C., Estevinho, B. N., & Rocha, F. (2018). Microencapsulation of curcumin by a spray-drying technique using gum arabic as encapsulating agent and release studies. Food and Bioprocess Technology, 11, 1705–1806.CrossRefGoogle Scholar
  9. Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried Amaranthus Betacyanin pigments. Journal of Food Science, 65(6), 1248–1252.CrossRefGoogle Scholar
  10. Calabrese, V., Courtenay, J. C., Edler, K. J., & Scott, J. L. (2018). Pickering emulsions stabilized by naturally derived or biodegradable particles. Current Opinion in Green and Sustainable Chemistry, 12, 83–90.CrossRefGoogle Scholar
  11. Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, 5(4), 420–428.CrossRefGoogle Scholar
  12. Carvalho, A. G. S., Silva, V. M., & Hubinger, M. D. (2014). Microencapsulation by spray drying of emulsified green coffee oil with two-layered membranes. Food Research International, 61, 236–245.CrossRefGoogle Scholar
  13. Carvalho, A. G. S., Machado, M. T. C., Silva, V. M., Sartoratto, A., Rodrigues, R. A. F., & Hubinger, M. D. (2016). Physical properties and morphology of spray dried microparticles containing anthocyanins of Jussara (Euterpe edulis Martius) extract. Powder Technology, 294, 421–428.CrossRefGoogle Scholar
  14. Costa, A. L. R., Gomes, A., & Cunha, R. L. (2018a). One-step ultrasound producing O/W emulsions stabilized by chitosan particles. Food Research International, 107, 717–725.CrossRefGoogle Scholar
  15. Costa, A. L. R., Gomes, A., Tibolla, H., Menegalli, F. C., & Cunha, R. L. (2018b). Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes. Carbohydrate Polymers, 194, 122–131.CrossRefGoogle Scholar
  16. Domian, E., Brynda-Kopytowska, A., & Marzec, A. (2017). Functional properties and oxidative stability of flaxseed oil microencapsulated by spray drying using legume proteins in combination with soluble fiber or trehalose. Food and Bioprocess Technology, 1–13.Google Scholar
  17. Donato, L., Schmitt, C., Bovetto, L., & Rouvet, M. (2009). Mechanism of formation of stable heat-induced β-lactoglobulin microgels. International Dairy Journal, 19, 295–306.CrossRefGoogle Scholar
  18. Drapala, K. P., Auty, M. A. E., Mulvihill, D. M., & O’Mahony, J. A. (2017). Influence of emulsifier type on the spray-drying properties of model infant formula emulsions. Food Hydrocolloids, 69, 56–66.CrossRefGoogle Scholar
  19. Eastman, J.E.; Moore, C.O. Cold Water Soluble Granular Starch for Gelled Food Composition. U.S. Patent 4465702, 14 ago. 1984.Google Scholar
  20. Elfalleh, W., Ying, M., Nasri, N., Sheng-Hua, H., Guasmi, F., & Ferchichi, A. (2011). Fatty acids from Tunisian and Chinese pomegranate (Punica granatum L.) seeds. International Journal of Food Sciences and Nutrition, 62(3), 200–206.CrossRefGoogle Scholar
  21. Ferrari, C. C., Germer, S. P. M., Alvim, I. D., Vissotto, F. Z., & Aguirre, J. M. A. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science and Technology, 47(6), 1237–1245.CrossRefGoogle Scholar
  22. Fioramonti, S. A., Stepanic, E. M., Tibaldo, A. M., Pavón, Y. L., & Santiago, L. G. (2019). Spray dried flaxseed oil powdered microcapsules obtained using milk whey proteins-alginate double layer emulsions. Food Research International, 119, 931–940.CrossRefGoogle Scholar
  23. Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121.CrossRefGoogle Scholar
  24. Guzey, D., Kim, H. J., & McClements, D. J. (2004). Factors influencing the production of o/w emulsions stabilized by β-lactoglobulin-pectin membranes. Food Hydrocolloids, 18, 967–975.CrossRefGoogle Scholar
  25. Hoyos-Leyva, J. D., Bello-Perez, L. A., Agama-Acevedo, J. E., Alvarez-Ramirez, J., & Jaramillo-Echeverry, L. M. (2019). Characterization of spray drying microencapsulation of almond oil into taro starch spherical aggregates. LWT- Food Science and Technology, 101, 526–533.CrossRefGoogle Scholar
  26. Jiang, S., Yildiz, G., Ding, J., Andrade, J., Rababahb, T., Almajwalc, A., Abulmeatyc, M. M., & Feng, H. (2019). Pea protein nanoemulsion and nanocomplex as carriers for protection of cholecalciferol (vitamin D3). Food and Bioprocess Technology, 12, 1031–1040.CrossRefGoogle Scholar
  27. Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194–205.CrossRefGoogle Scholar
  28. Liu, W., Gao, H., McClements, D. J., Zhou, L., & Zou, L. (2019). Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels. Food Hydrocolloids, 88, 210–217.CrossRefGoogle Scholar
  29. Loughrill, E., Thompson, S., Owusu-Ware, S., Snowden, M. J., Douroumis, D., & Zand, N. (2019). Controlled release of microencapsulated docosahexaenoic acid (DHA) by spray-drying processing. Food Chemistry, 286, 368–375.CrossRefGoogle Scholar
  30. McClements, D. J. (2011). Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter, 7, 2297–2316.CrossRefGoogle Scholar
  31. Premi, M., & Sharma, H. K. (2017). Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behaviour and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules, 105(Pt 1), 1232–1240.CrossRefGoogle Scholar
  32. Ravanfar, R., Comunian, T. A., Dando, R., & Abbaspourrad, A. (2018). Optimization of microcapsules shell structure to preserve labile compounds: A comparison between microfluidics and conventional homogenization method. Food Chemistry, 241, 460–467.CrossRefGoogle Scholar
  33. Ross, Y. H. (1995). Phase transitions in foods. San Diego: Academic Press.Google Scholar
  34. Samborska, K., Jedlinska, A., Wiktor, A., Derewiaka, D., Wolosiak, R., Matwijczuk, A., Jamróz, W., Skwarczynska-Maj, K., Kielczewski, D., Blazowski, L., Tulodziecki, M., & Witrowa-Rajchert, D. (2019). The effect of low-temperature spray drying with dehumidified air on phenolic compounds, antioxidant activity, and aroma compounds of rapeseed honey powders. Food and Bioprocess Technology, 12, 919–932.CrossRefGoogle Scholar
  35. Santomaso, A., Lazzaro, P., & Canu, P. (2003). Powder flowability and density ratios: The impact of granules packing. Chemical Engineering Science, 58, 2857–2874.CrossRefGoogle Scholar
  36. Shahidi, F., & Han, X. Q. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science and Nutrition, 33, 501–547.CrossRefGoogle Scholar
  37. Siano, F., Addeo, F., Volpe, M. G., Paolucci, M., & Picariello, G. (2016). Oxidative stability of pomegranate (Punica granatum L.) seed oil to simulated gastric conditions and thermal stress. Journal of Agricultural and Food Chemistry, 64, 8369–8378.CrossRefGoogle Scholar
  38. Wang, B., Adhikari, B., & Barrow, C. J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358–365.CrossRefGoogle Scholar
  39. Webb, P. A. (2001). Volume and density determinations for particle technologists. Micromeritics instruments Corp. 2/16/01 (www.micromeritics.com).
  40. Zamani, S., Malchione, N., Selig, M. J., & Abbaspourrad, A. (2018). Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels. Food & Function, 9(2), 982–990.CrossRefGoogle Scholar
  41. Zheng, L., Cao, C., Li, R.-Y., Cao, L.-D., Zhou, Z.-L., Li, M., & Huang, Q.-L. (2018). Preparation and characterization of water-in-oil emulsions of isoprothiolane. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 537, 399–410.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Talita A. Comunian
    • 1
    Email author
  • Ana Gabriela da Silva Anthero
    • 1
  • Eveling Oliveira Bezerra
    • 1
  • Izabel Cristina Freitas Moraes
    • 2
  • Miriam Dupas Hubinger
    • 1
  1. 1.Department of Food Engineering, School of Food EngineeringUniversity of CampinasCampinasBrazil
  2. 2.University of São Paulo, School of Animal Science and Food EngineeringPirassunungaBrazil

Personalised recommendations