Food and Bioprocess Technology

, Volume 12, Issue 12, pp 2107–2119 | Cite as

Highly Stable Microparticles of Cashew Apple (Anacardium occidentale L.) Juice with Maltodextrin and Chemically Modified Starch

  • Paola D. D. S. Maia
  • Diego dos Santos Baião
  • Victor Paulo F. da Silva
  • Verônica Maria de Araújo Calado
  • Christiane Queiroz
  • Cristiana Pedrosa
  • Vera Lúcia Valente-Mesquita
  • Anna Paola T. R. PierucciEmail author
Original Paper


The cashew apple (Anacardium occidentale L.) is rich in antioxidants such as ascorbic acid, carotenoids, and phenolic compounds, in addition to the macronutrients. In recent years, there has been a growing demand of “easy to prepare” fruit products for the general population. This work aimed to evaluate the microencapsulation of cashew apple juice by spray drying using different ratios of encapsulating matrices and different concentrations of total solids. The formed microparticles were evaluated by the retention of ascorbic acid, total phenolics, moisture, yield, solubility, and particle size and morphology. Three samples formulated with 15% total solids and three encapsulating matrices (40:60% of maltodextrin: starch octenylsuccinate, 100% of maltodextrin, and 100% starch octenylsuccinate) were selected for the stability study. All microparticles were 100% soluble, and the best results were obtained using the microparticles with the highest total solids ratios (15%). When using a single encapsulant, starch octenyl succinate was superior to maltodextrin in terms of ascorbic acid and total phenolics retention, moisture, yield, solubility, and particle size. The microparticles with 40:60% of maltodextrin: octenylsuccinate and 15% total solid showed the highest ascorbic acid and total phenolics retention as well as good physical properties and better performance when compared to other encapsulating matrix compositions. The microencapsulated cashew apple juice using such a formulation can be used in the food industry to produce functional and special-purpose foods to promote human health.


Cashew apple Maltodextrin Antioxidant activity Shelf-life stability Microencapsulation Spray drying 



This study received financial support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro).

Author Contributions

P.D.D.S.M., V.L.V.M., and A.P.T.P. conceptualized and designed the research. P.D.D.S.M., D.S.B., V.P.F.S., and C.Q. analyzed the cashew apple juice, obtained experimental data, and interpreted the results. P.D.D.S.M., D.S.B., and C.Q. prepared the figures and wrote the manuscript. P.D.D.S.M., D.S.B., V.L.V.M., and A.P.T.P. edited and revised the manuscript. All authors read the manuscript, critically examined the important intellectual content, and approved the final version.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11947_2019_2376_MOESM1_ESM.docx (12 kb)
ESM 1 (DOCX 12 kb)


  1. Amorati, R., & Valgimigli, L. (2018). Methods to measure the antioxidant activity of phytochemicals and plant extracts. Journal of Agricultural and Food Chemistry, 66(13), 3324–3329.PubMedCrossRefGoogle Scholar
  2. Andrade, M. I. R., Sousa, A. C. R., Abreu, F. A. P., Ximenes, S. F., & Garruti, D. S. (2018). Changes in cashew apple juice flavor after tangential microfiltration process. Annals of Nutrition & Food Science, 2(4), 1–4.Google Scholar
  3. Association of Official Analytical Chemists (AOAC). (2000). Official methods of analysis of the Association of the Agricultural Chemists. Washington: A.O.A.C. (12 Ed).Google Scholar
  4. Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301–1309.CrossRefGoogle Scholar
  5. Bastos, D. S., & do Pilar Gonçalves, M., de Andrade, C. T., de Lima Araújo, K. G., & da Rocha Leão, M. H. M. (2012). Microencapsulation of cashew apple (Anacardium occidentale, L.) juice using a new chitosan–commercial bovine whey protein isolate system in spray drying. Food and Bioproducts Processing, 90(4), 683–692.Google Scholar
  6. Bataglion, G. A., da Silva, F. M., Eberlin, M. N., & Koolen, H. H. F. (2015). Determination of the phenolic composition from Brazilian tropical fruits by UHPLC–MS/MS. Food Chemistry, 180, 280–287.PubMedCrossRefGoogle Scholar
  7. Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76.PubMedCrossRefGoogle Scholar
  8. Boatright, W. L. (2016). Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid. Food Chemistry, 196, 1361–1367.PubMedCrossRefGoogle Scholar
  9. Botrel, D. A., de Barros Fernandes, R. V., Borges, S. V., & Yoshida, M. I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International, 62, 344–352.CrossRefGoogle Scholar
  10. Brazil, National Health Surveillance Agency. (2012). Technical regulation on complementary nutrition information. Ministry of Health, Resolution RDC N°54. Accessed 20 May 2019.Google Scholar
  11. Çam, M., İçyer, N. C., & Erdoğan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT- Food Science and Technology, 55(1), 117–123.CrossRefGoogle Scholar
  12. Cazado, C. P. S., & Pinho, S. C. (2016). Effect of different stress conditions on the stability of quercetin-loaded lipid microparticles produced with babacu (Orbignya speciosa) oil: Evaluation of their potential use in food applications. Food Science and Technology, 36(1), 9–17.CrossRefGoogle Scholar
  13. Christina, B. L., Taylor, S., & Mauer, L. J. (2015). Physical stability of L-ascorbic acid amorphous solid dispersions in different polymers: A study of polymer crystallization inhibitor properties. Food Research International, 76(3), 867–877.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Costa, A. M. M., Nunes, J. C., Lima, B. N., Pedrosa, C., Calado, V., Torres, A. G., et al. (2015). Effective stabilization of CLA by microencapsulation in pea protein. Food Chemistry, 168, 157–166.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Das, I., & Arora, A. (2017). Post-harvest processing technology for cashew apple - a review. Journal of Food Engineering, 194, 87–98.CrossRefGoogle Scholar
  16. De Oliveira, M. A., Maia, G. A., De Figueiredo, R. W., De Souza, A. C. R., De Brito, E. S., & De Azeredo, H. M. C. (2009). Addition of cashew tree gum to maltodextrin-based carriers for spray drying of cashew apple juice. International Journal of Food Science & Technology, 44(3), 641–645.CrossRefGoogle Scholar
  17. Dias, M. I., Ferreira, I. C., & Barreiro, M. F. (2015). Microencapsulation of bioactives for food applications. Food & Function, 6(4), 1035–1052.CrossRefGoogle Scholar
  18. Drusch, S., Serfert, Y., Scampicchio, M., Schmidt-Hansberg, B., & Schwarz, K. (2007). Impact of physicochemical characteristics on the oxidative stability of fish oil microencapsulated by spray-drying. Journal of Agricultural and Food Chemistry, 55(26), 11044–11051.PubMedCrossRefGoogle Scholar
  19. Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139–1147.PubMedCrossRefGoogle Scholar
  20. Fantini, M., Benvenuto, M., Masuelli, L., Frajese, G. V., Tresoldi, I., Modesti, A., & Bei, R. (2015). In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: Perspectives on cancer treatment. International Journal of Molecular Sciences, 16(5), 9236–9282.PubMedPubMedCentralCrossRefGoogle Scholar
  21. FAO – Food and Agriculture Organization of the United Nations. (2014). Key statistics of food and agriculture external trade. United Nations Conference on Trade and Development. ().Google Scholar
  22. Finotelli, P. V., & Rocha-Leão, M. H. (2005). Microencapsulation of ascorbic acid in maltodextrin and capsule using spray-drying. In Anais do 4° Mercosur congress on process systems engineering. Innovative Food Science and Emerging Technologies, 8, 395–398.Google Scholar
  23. Fonteles, T. V., Leite, A. K. F., Silva, A. R. A., Fernandes, F. A. N., & Rodrigues, S. (2017). Sonication effect on bioactive compounds of cashew apple bagasse. Food and Bioprocess Technology, 10(10), 1854–1864.CrossRefGoogle Scholar
  24. Fu, F., & Hu, L. (2017). Temperature sensitive colour-changed composites. Advanced High Strength Natural Fibre Composites in Construction, 405–423.Google Scholar
  25. Gaikwad, K. K., Singh, S., & Lee, Y. S. (2018). Oxygen scavenging films in food packaging. Environmental Chemistry Letters, 6(2), 523–538.CrossRefGoogle Scholar
  26. Goula, A. M., & Adamopoulos, K. G. (2005). Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. Journal of Food Engineering, 66(1), 35–42.CrossRefGoogle Scholar
  27. Hendrawati, T. Y., Sari, A. M., Rahman, M. I. S., Nugrahani, R. A., & Siswahyu, A. (2019). Microencapsulation techniques of herbal compounds for raw materials in food industry, cosmetics and pharmaceuticals (pp. 1–15). Technologies and Industrial Applications: Microencapsulation - Processes.Google Scholar
  28. Hofman, D. L., van Buul, V. J., & Brouns, F. J. P. H. (2016). Nutrition, health, and regulatory aspects of digestible maltodextrins. Critical Reviews in Food Science and Nutrition, 56(12), 2091–2100.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hoyos-Leyva, J. D., Bello-Pérez, L. A., Alvarez-Ramirez, J., & Garcia, H. S. (2018). Microencapsulation using starch as wall material: A review. Food Reviews International, 34(2), 148–161.CrossRefGoogle Scholar
  30. Islam, M. S., Patras, A., Pokharel, B., Wu, Y., Vergne, M. J., Shade, L., et al. (2016). UV-C irradiation as an alternative disinfection technique: Study of its effect on polyphenols and antioxidant activity of apple juice. Innovative Food Science & Emerging Technologies, 34, 344–351.CrossRefGoogle Scholar
  31. Jana, A., Halder, S. K., Ghosh, K., Paul, T., Vágvölgyi, C., Mondal, K. C., & Das Mohapatra, P. K. (2015). Tannase immobilization by chitin-alginate based adsorption-entrapment technique and its exploitation in fruit juice clarification. Food and Bioprocess Technology, 8(11), 2319–2329.CrossRefGoogle Scholar
  32. Karou, D., Dicko, M. H., Simpore, J., & Traore, A. S. (2005). Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso. African Journal of Biotechnology, 4(8), 823–828.Google Scholar
  33. Lavinas, F. C., Almeida, N. C., Miguel, M. A. L., Lopes, M. L. M., & Valente-Mesquita, V. L. (2006). Estudo da estabilidade química e microbiológica do suco de caju in natura armazenado em diferentes condições de estocagem. Ciência e Tecnologia de Alimentos, 26(4), 875–883.CrossRefGoogle Scholar
  34. Leitão, R. C., Viana, M., Pinto, G., Freitas, A. V., & Santaella, S. (2011). Produção de Biogás a Partir do Glicerol Oriundo do biodiesel. Technical Report, 180, 1–4.Google Scholar
  35. Li, Y., Tang, B., Chen, J., & Lai, P. (2018). Microencapsulation of plum (Prunus salicina Lindl.) phenolics by spray drying technology and storage stability. Food Science and Technology, 38(3), 530–536.CrossRefGoogle Scholar
  36. Lutz, I. A. (2005). Métodos físico-químicos Para análise de alimentos. São Paulo: Instituto Adolfo Lutz.Google Scholar
  37. Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385.Google Scholar
  38. Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A., Chen, C. Y. O., & Lima, G. P. P. (2017). Phenolic compounds: Functional properties, impact of processing and bioavailability. Phenolic Compounds - Biological Activity, Chapter, 1, 1–24.Google Scholar
  39. Nilsson, L., & Bergenståhl, B. (2007). Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. Journal of Colloid and Interface Science, 308(2), 508–513.PubMedCrossRefGoogle Scholar
  40. Obón, J. M., Castellar, M. R., Alacid, M. M., & Fernández-López, J. A. (2009). Production of a red–purple food colorant from Opuntiastrict a fruits by spray drying and its application in food model systems. Journal of Food Engineering, 90(4), 471–479.CrossRefGoogle Scholar
  41. Paulo, M. G., Marques, H. M. C., Morais, J. A., & Almeida, A. J. (1999). An isocratic LC method for the simultaneous determination of vitamins a, C, E and β-carotene. Journal of Pharmaceutical and Biomedical Analysis, 21(2), 399–406.PubMedCrossRefGoogle Scholar
  42. Pereira, H. V. R., Saraiva, K. P., Carvalho, L. M. J., Andrade, L. R., Pedrosa, C., & Pierucci, A. P. T. R. (2009). Legumes seeds protein isolates in the production of ascorbic acid microparticles. Food Research International, 42(1), 115–121.CrossRefGoogle Scholar
  43. Pereira, A. L. F., Almeida, F. D. L., Lima, M. A., & Costa, J. M. C. (2014). Spray-drying of probiotic cashew apple juice. Food and Bioprocess Technology, 7(9), 2492–2499.Google Scholar
  44. Pierucci, A. P. T. R., Andrade, L. R., Baptista, E. B., Volpato, N. M., & Rocha-Leão, M. H. M. (2006). New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. Journal of Microencapsulation, 23(6), 654–662.PubMedCrossRefGoogle Scholar
  45. Pierucci, A. P. T. R., Andrade, L. R., Farina, M., Pedrosa, C., & Rocha-Leão, M. H. M. (2007). Comparison of α-tocopherol microparticles produced with different wall materials: Pea protein a new interesting alternative. Journal of Microencapsulation, 24(3), 201–213.PubMedCrossRefGoogle Scholar
  46. Pourashouri, P., Shabanpour, B., Razavi, S. H., Jafari, S. M., Shabani, A., & Aubourg, S. P. (2014). Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food and Bioprocess Technology, 7(8), 2354–2365.CrossRefGoogle Scholar
  47. Prasertsri, P., & Leelayuwat, N. (2017). Cashew apple juice: Contents and effects on health. Nutrition & Food Science International Journal, 491), 1-3.Google Scholar
  48. Prommajak, T., Leksawasdi, N., & Rattanapanone, N. (2014). Biotechnological valorization of cashew apple: A review. Chiang Mai University Journal of Natural Sciences, 13(2), 159–182.CrossRefGoogle Scholar
  49. Queiroz, C., da Silva, A. J. R., Lopes, M. L. M., Fialho, E., & Valente-Mesquita, V. L. (2011a). Polyphenol oxidase activity, phenolic acid composition and browning in cashew apple (Anacardium occidentale, L.) after processing. Food Chemistry, 125(1), 128–132.CrossRefGoogle Scholar
  50. Queiroz, C., Lopes, M. L. M., Fialho, E., & Valente-Mesquita, V. L. (2011b). Changes in bioactive compounds and antioxidant capacity of fresh-cut cashew apple. Food Research International, 44(5), 1459–1462.CrossRefGoogle Scholar
  51. Raseetha, S., Leong, S. Y., Burritt, D. J., & Oey, I. (2013). Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing. Food Chemistry, 138(2), 1360–1369.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231–1237.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Reineccius, G. A. (2004). The spray drying of food flavors. Drying Technology, 22(6), 1289–1324.CrossRefGoogle Scholar
  54. Rosenberg, M., Kopelman, I. J., & Talmon, Y. (1990). Factors affecting retention in spray-drying microencapsulation of volatile materials. Journal of Agricultural and Food Chemistry, 38(5), 1288–1294.CrossRefGoogle Scholar
  55. Saénz, C., Tapia, S., Chávez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntiaficus-indica). Food Chemistry, 114(2), 616–622.CrossRefGoogle Scholar
  56. Sansone, F., Mencherini, T., Picerno, P., d’Amore, M., Aquino, R. P., & Lauro, M. R. (2011). Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. Journal of Food Engineering, 105(3), 468–476.CrossRefGoogle Scholar
  57. Sheu, T. Y., & Rosenberg, M. (1998). Microstructure of microcapsules consisting of whey proteins and carbohydrates. Journal of Food Science, 63(3), 491–494.CrossRefGoogle Scholar
  58. Singh, S. S., Abdullah, S., Pradhan, R. C., & Mishra, S. (2019). Physical, chemical, textural, and thermal properties of cashew apple fruit. Journal of Food Process Engineering, e1394, 1-10.Google Scholar
  59. Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.CrossRefGoogle Scholar
  60. Sweedman, M. C., Tizzotti, M. J., Schäfer, C., & Gilbert, R. G. (2013). Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 92(1), 905–920.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Tresserra-Rimbau, A., Guasch-Ferré, M., Salas-Salvadó, J., Toledo, E., Corella, D., Castañer, O., et al. (2016). Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. The Journal of Nutrition, 146(4), 767–777.Google Scholar
  62. Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: Fruits. Journal of Agricultural and Food Chemistry, 49(11), 5315–5321.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Walton, D. E., & Mumford, C. J. (1999). The morphology of spray-dried particles: The effect of process variables upon the morphology of spray-dried particles. Chemical Engineering Research and Design, 77(5), 442–460.CrossRefGoogle Scholar
  64. Wojdyło, A., Carbonell-Barrachina, Á. A., Legua, P., & Hernández, F. (2016). Phenolic composition, ascorbic acid content, and antioxidant capacity of Spanish jujube (Ziziphus jujube mill.) fruits. Food Chemistry, 201, 307–314.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Zheng, L., Ding, Z., Zhang, M., & Sun, J. (2011). Microencapsulation of bayberry polyphenols by ethyl cellulose: Preparation and characterization. Journal of Food Engineering, 104(1), 89–95.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paola D. D. S. Maia
    • 1
  • Diego dos Santos Baião
    • 2
  • Victor Paulo F. da Silva
    • 1
  • Verônica Maria de Araújo Calado
    • 2
  • Christiane Queiroz
    • 3
  • Cristiana Pedrosa
    • 1
  • Vera Lúcia Valente-Mesquita
    • 1
  • Anna Paola T. R. Pierucci
    • 1
    Email author
  1. 1.Departamento de Nutrição Básica e ExperimentalInstituto de Nutrição Josué de Castro, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Química, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Departamento de NutriçãoUniversidade Federal do ParanáCuritivaBrazil

Personalised recommendations