Advertisement

Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior

  • Hélder D. Silva
  • Miguel A. CerqueiraEmail author
  • Francesco Donsì
  • Ana C. Pinheiro
  • Giovanna Ferrari
  • António A. Vicente
Original Paper
  • 21 Downloads

Abstract

Nanoemulsions were successfully developed through high-pressure homogenization. The layer-by-layer electrostatic technique was used for the subsequent deposition of a chitosan and alginate polyelectrolyte layers, thus leading to the development of a multilayer nanoemulsion. The effect of polyelectrolytes concentration in the development of multilayer nanoemulsions was evaluated in terms of hydrodynamic diameter (Hd), polydispersity index (PdI), zeta potential (Zp), and curcumin encapsulation efficiency. The interactions between polyelectrolytes and nanoemulsion were further analyzed using Fourier transform infrared (FTIR) spectroscopy and quartz crystal microbalance (QCM), while curcumin degradation was determined through the evaluation of the antioxidant capacity of the nanosystems. Results showed an encapsulation efficiency of 99.8 ± 0.8% and a loading capacity of 0.53 ± 0.03% (w/w). The presence of the multilayers leads to an increase of the Hd of the nanosystems, from 80.0 ± 0.9 nm (nanoemulsion) to 130.1 ± 1.5 nm (multilayer nanoemulsion). Release profiles were evaluated at different conditions, fitting a linear superposition model to experimental data suggests an anomalous behavior, being the relaxation of the surfactant and polyelectrolytes the rate-determining phenomena in curcumin release. The developed nanosystems showed great potential for the incorporation of lipophilic bioactive compounds, in view of their application in food and pharmaceutical products.

Keywords

Multilayer Nanoemulsion pH-responsive behavior Curcumin degradation Controlled release 

Notes

Acknowledgments

The authors Hélder D. Silva and Ana C. Pinheiro (SFRH/BD/81288/2011, SFRH/BPD/101181/2014, respectively) are the recipients of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, Portugal). The authors would like to acknowledge Rui Fernandes from IBMC, University of Porto, for assistance in taking the TEM pictures and Estefanía López Silva, from CACTI, University of Vigo for assistance in the FTIR analysis. The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the project “BioInd–Biotechnology and Bioengineering for improved Industrial and Agro-Food processes,” REF.NORTE-07-0124- FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. We also thank the European Commission: BIOCAPS (316265, FP7/REGPOT-2012-2013.1). This work was supported by the “CARINA” project for the safeness, sustainability, and competitiveness of agro-food productions of Campania Region. The support of EU Cost Action FA1001 is gratefully acknowledged. The authors also acknowledge Stepan for providing the Neobee 1053 oil.

References

  1. Adamczak, M., Kupiec, A., Jarek, E., Szczepanowicz, K., & Warszyński, P. (2014). Preparation of the squalene-based capsules by membrane emulsification method and polyelectrolyte multilayer adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 147–152.CrossRefGoogle Scholar
  2. Anton, N., & Vandamme, T. (2011). Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharmaceutical Research, 28(5), 978–985.PubMedCrossRefGoogle Scholar
  3. Artiga-Artigas M, Lanjari-Pérez Y, Martín-Belloso O. (2018). Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant. Food Chem. 266:466–474.  https://doi.org/10.1016/j.foodchem.2018.06.043 PubMedCrossRefGoogle Scholar
  4. Atsumi, O., Akiko, M., Keiji, S., & Kenshiro, T. (1994). Dynamic properties of soluble monolayer of sodium dodecyl sulfate (SDS) on aqueous solution. Japanese Journal of Applied Physics, 33(10B), L1468.Google Scholar
  5. Azevedo, M. A., Bourbon, A. I., Vicente, A. A., & Cerqueira, M. A. (2014). Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. International Journal of Biological Macromolecules, 71, 141–146.PubMedCrossRefGoogle Scholar
  6. Berens, A. R., & Hopfenberg, H. B. (1978). Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer, 19(5), 489–496.CrossRefGoogle Scholar
  7. Berton-Carabin, C. C., Ropers, M.-H., & Genot, C. (2014). Lipid oxidation in oil-in-water emulsions: involvement of the interfacial layer. Comprehensive Reviews in Food Science and Food Safety, 13(5), 945–977.CrossRefGoogle Scholar
  8. Bourbon, A. I., Pinheiro, A. C., Cerqueira, M. A., Rocha, C. M. R., Avides, M. C., Quintas, M. A. C., & Vicente, A. A. (2011). Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 106(2), 111–118.CrossRefGoogle Scholar
  9. Bourbon, A. I., Pinheiro, A. C., Carneiro-da-Cunha, M. G., Pereira, R. N., Cerqueira, M. A., & Vicente, A. A. (2015). Development and characterization of lactoferrin-GMP nanohydrogels: evaluation of pH, ionic strength and temperature effect. Food Hydrocolloids, 48, 292–300.CrossRefGoogle Scholar
  10. Burke, S. E., & Barrett, C. J. (2003a). Acid−base equilibria of weak polyelectrolytes in multilayer thin films. Langmuir, 19(8), 3297–3303.CrossRefGoogle Scholar
  11. Burke, S. E., & Barrett, C. J. (2003b). pH-responsive properties of multilayered poly(l-lysine)/hyaluronic acid surfaces. Biomacromolecules, 4(6), 1773–1783.PubMedCrossRefGoogle Scholar
  12. Carreira, A. S., Gonçalves, F. A. M. M., Mendonça, P. V., Gil, M. H., & Coelho, J. F. J. (2010). Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohydrate Polymers, 80(3), 618–630.CrossRefGoogle Scholar
  13. Cerqueira, M., Pinheiro, A., Silva, H., Ramos, P., Azevedo, M., Flores-López, M., Rivera, M., Bourbon, A., Ramos, Ó., & Vicente, A. (2014). Design of bio-nanosystems for oral delivery of functional compounds. Food Engineering Reviews, 6(1-2), 1–19.CrossRefGoogle Scholar
  14. Choi, A.-J., Kim, C.-J., Cho, Y.-J., Hwang, J.-K., & Kim, C.-T. (2011). Characterization of capsaicin-loaded nanoemulsions stabilized with alginate and chitosan by self-assembly. Food and Bioprocess Technology, 4(6), 1119–1126.CrossRefGoogle Scholar
  15. Cui, J., van Koeverden, M. P., Müllner, M., Kempe, K., & Caruso, F. (2014). Emerging methods for the fabrication of polymer capsules. Advances in Colloid and Interface Science, 207, 14–31.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Delcea, M., Möhwald, H., & Skirtach, A. G. (2011). Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced Drug Delivery Reviews, 63(9), 730–747.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Donsì, F., Sessa, M., & Ferrari, G. (2011). Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization. Industrial & Engineering Chemistry Research, 51(22), 7606–7618.CrossRefGoogle Scholar
  18. EC. (2011). Plastic materials and articles intended to come into contact with food. In E. Commission (Ed.), Commission Regulation (EU) No 10/2011. Official Journal of the European Union.Google Scholar
  19. EFSA. (2010). Call for scientific data on food additives permitted in the EU and belonging to the functional classes of emulsifiers, stabilisers and gelling agents.Google Scholar
  20. Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6, 628–647.CrossRefGoogle Scholar
  21. Food and Drug Administration (2019) 21CFR172.822. Code of federal regulations, title 21, volume 3. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.822. Accessed 11 Nov 2019.
  22. Friedrich, R. B., Kann, B., Coradini, K., Offerhaus, H. L., Beck, R. C. R., & Windbergs, M. (2015). Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. European Journal of Pharmaceutical Sciences, 78, 204–213.PubMedCrossRefGoogle Scholar
  23. Gordon, V., Marom, G., & Magdassi, S. (2014). Formation of hydrophilic nanofibers from nanoemulsions through electrospinning. International Journal of Pharmaceutics, 478(1), 172–179.PubMedCrossRefGoogle Scholar
  24. Guttoff, M., Saberi, A. H., & McClements, D. J. (2015). Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chemistry, 171(0), 117–122.PubMedCrossRefGoogle Scholar
  25. Guzey, D., & McClements, D. J. (2006). Formation, stability and properties of multilayer emulsions for application in the food industry. Advances in Colloid and Interface Science, 128-130, 227–248.PubMedCrossRefGoogle Scholar
  26. Harnsilawat, T., Pongsawatmanit, R., & McClements, D. J. (2006). Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: a calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 20(5), 577–585.CrossRefGoogle Scholar
  27. Hu, K., Huang, X., Gao, Y., Huang, X., Xiao, H., & McClements, D. J. (2015). Core–shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chemistry, 182, 275–281.PubMedCrossRefGoogle Scholar
  28. Kaur, K., Kumar, R., & Mehta, S. K. (2015). Nanoemulsion: a new medium to study the interactions and stability of curcumin with bovine serum albumin. Journal of Molecular Liquids, 209, 62–70.CrossRefGoogle Scholar
  29. Khurana, A., & Ho, C.-T. (1988). High performance liquid chromatographic analysis of curcuminoids and their photo-oxidative decomposition compounds in curcuma longa L. Journal of Liquid Chromatography, 11(11), 2295–2304.CrossRefGoogle Scholar
  30. Kim, H.-J., Kim, D.-J., Karthick, S. N., Hemalatha, K. V., Raj, C. J., Ok, S., & Choe, Y. (2013). Curcumin dye extracted from curcuma longa L. Used as sensitizers for efficient dye-sensitized solar cells. International Journal of Electrochemical Science, 8, 8320–8328.Google Scholar
  31. Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., & Grøndahl, L. (2007). Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, 8(8), 2533–2541.PubMedCrossRefGoogle Scholar
  32. Lee, S.J., Choi S.J , Li, Y., Decker, E.A., McClements, D.J. (2011) Protein-Stabilized Nanoemulsions and Emulsions: Comparison of Physicochemical Stability, Lipid Oxidation, and Lipase Digestibility. Journal of Agricultural and Food Chemistry, 59, 415–427PubMedCrossRefGoogle Scholar
  33. Li, P., Dai, Y.-N., Zhang, J.-P., Wang, A.-Q., & Wei, Q. (2008). Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. International Journal of Biomedical Science : IJBS, 4(3), 221–228.PubMedGoogle Scholar
  34. Li, Y., Hu, M., Xiao, H., Du, Y., Decker, E. A., & McClements, D. J. (2010). Controlling the functional performance of emulsion-based delivery systems using multi-component biopolymer coatings. European Journal of Pharmaceutics and Biopharmaceutics, 76(1), 38–47.PubMedCrossRefGoogle Scholar
  35. Li, M., Zhang, F., Liu, Z., Guo, X., & Qiao, L. (2018). Controlled release system by active gelatin film incorporated with β-cyclodextrin-thymol inclusion complexes. Food and Bioprocess Technology, 1–8.Google Scholar
  36. Li, X., Wu, G., Qi, X., Zhang, H., Wang, L., Qian, H. (2019). Physicochemical properties of stable multilayer nanoemulsion prepared via the spontaneously-ordered adsorption of short and long chains. Food Chemistry, 274, 620–628PubMedCrossRefGoogle Scholar
  37. Liechty, W. B., Scheuerle, R. L., & Peppas, N. A. (2013). Tunable, responsive nanogels containing t-butyl methacrylate and 2-(t-butylamino)ethyl methacrylate. Polymer, 54(15), 3784–3795.CrossRefGoogle Scholar
  38. Liu, Y., Cai, Y., Jiang, X., Wu, J., & Le, X. (2016). Molecular interactions, characterization and antimicrobial activity of curcumin–chitosan blend films. Food Hydrocolloids, 52, 564–572.CrossRefGoogle Scholar
  39. Madrigal-Carballo, S., Lim, S., Rodriguez, G., Vila, A. O., Krueger, C. G., Gunasekaran, S., & Reed, J. D. (2010). Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. Journal of Functional Foods, 2(2), 99–106.CrossRefGoogle Scholar
  40. Malvern, I. (2011). Dynamic light scattering common terms defined. In M. Instruments (Ed.). Worcestershire, UK.Google Scholar
  41. Mangolim, C. S., Moriwaki, C., Nogueira, A. C., Sato, F., Baesso, M. L., Neto, A. M., & Matioli, G. (2014). Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chemistry, 153, 361–370.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Martins, G. V., Mano, J. F., & Alves, N. M. (2010). Nanostructured self-assembled films containing chitosan fabricated at neutral pH. Carbohydrate Polymers, 80(2), 570–573.CrossRefGoogle Scholar
  43. Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18(41), R635.Google Scholar
  44. McClements, D. J., & Xiao, H. (2012). Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food & Function, 3(3), 202–220.CrossRefGoogle Scholar
  45. Milcovich, G., & Asaro, F. (2012). Insights into catanionic vesicles thermal transition by NMR spectroscopy. In V. Starov & P. Griffiths (Eds.), UK Colloids 2011 (Vol. 139, pp. 35–38). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  46. Mohan, P. R. K., Sreelakshmi, G., Muraleedharan, C. V., & Joseph, R. (2012). Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vibrational Spectroscopy, 62, 77–84.CrossRefGoogle Scholar
  47. Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385(1–2), 113-142.Google Scholar
  48. Morais Diane, J. M., & Burgess, J. (2014). Vitamin E nanoemulsions characterization and analysis. International Journal of Pharmaceutics, 465(1–2), 455–463.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mukhopadhyay, P., Chakraborty, S., Bhattacharya, S., Mishra, R., & Kundu, P. P. (2015). pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. International Journal of Biological Macromolecules, 72, 640–648.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2014). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 142(0), 57–63.CrossRefGoogle Scholar
  51. Paruchuri, V. K., Nalaskowski, J., Shah, D. O., & Miller, J. D. (2006). The effect of cosurfactants on sodium dodecyl sulfate micellar structures at a graphite surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 272(3), 157–163.CrossRefGoogle Scholar
  52. Pawlak, A., & Mucha, M. (2003). Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 396(1–2), 153–166.CrossRefGoogle Scholar
  53. Pinheiro, A. C., Bourbon, A. I., Quintas, M. A. C., Coimbra, M. A., & Vicente, A. A. (2012). K-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innovative Food Science & Emerging Technologies, 16(0), 227–232.CrossRefGoogle Scholar
  54. Pinheiro, A. C., Bourbon, A. I., Cerqueira, M. A., Maricato, É., Nunes, C., Coimbra, M. A., & Vicente, A. A. (2015). Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers, 115, 1–9.PubMedCrossRefGoogle Scholar
  55. Pinheiro, A. C., Coimbra, M. A., & Vicente, A. A. (2016). In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers – Effect of interfacial composition. Food Hydrocolloids, 52, 460–467.CrossRefGoogle Scholar
  56. Plaza-Oliver, M., Baranda, J. F., Rodríguez Robledo, V., Castro-Vázquez, L., Gonzalez-Fuentes, J., Marcos, P., Lozano, M. V., Santander-Ortega, M. J., & Arroyo-Jimenez, M. M. (2015). Design of the interface of edible nanoemulsions to modulate the bioaccessibility of neuroprotective antioxidants. International Journal of Pharmaceutics, 490(1–2), 209–218.PubMedCrossRefGoogle Scholar
  57. Priyadarsini, K. I. (2009). Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10(2), 81–95.CrossRefGoogle Scholar
  58. Priyadarsini, K. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19(12), 20091–20112.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Qian, C., Decker, E.A., Xiao, H., McClements, D.J.. (2012) Physical and chemical stability of b-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry, 132, 1221–1229PubMedCrossRefGoogle Scholar
  60. Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids, 25(5), 1000–1008.CrossRefGoogle Scholar
  61. Rao, J., & McClements, D. J. (2013). Optimization of lipid nanoparticle formation for beverage applications: influence of oil type, cosolvents, and cosurfactants on nanoemulsion properties. Journal of Food Engineering, 118(2), 198–204.CrossRefGoogle Scholar
  62. Rufino, M. d. S. M., Alves, R. E., Brito, E. S. d., Morais, S. M. d., Sampaio, C. d. G., Pérez - Jiménez, J., & Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. In Embrapa Agroindústria Tropical. Comunicado técnico (Ed.), (Vol. 2015). Fortaleza: Embrapa Agroindústria Tropical.Google Scholar
  63. Saberi, A. H., Fang, Y., & McClements, D. J. (2013). Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: effect of propylene glycol and ethanol on formation, stability, and properties. Food Research International, 54(1), 812–820.CrossRefGoogle Scholar
  64. Saberi, A. H., Zeeb, B., Weiss, J., & McClements, D. J. (2015). Tuneable stability of nanoemulsions fabricated using spontaneous emulsification by biopolymer electrostatic deposition. Journal of Colloid and Interface Science, 455, 172–178.PubMedCrossRefGoogle Scholar
  65. Sari, T. P., Mann, B., Kumar, R., Singh, R. R. B., Sharma, R., Bhardwaj, M., & Athira, S. (2015). Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids, 43, 540–546.CrossRefGoogle Scholar
  66. Sharipova, A. A., Aidarova, S. B., Grigoriev, D., Mutalieva, B., Madibekova, G., Tleuova, A., & Miller, R. (2016). Polymer–surfactant complexes for microencapsulation of vitamin E and its release. Colloids and Surfaces B: Biointerfaces, 137, 152–157.PubMedCrossRefGoogle Scholar
  67. Shi, X., Du, Y., Sun, L., Zhang, B., & Dou, A. (2006). Polyelectrolyte complex beads composed of water-soluble chitosan/alginate: characterization and their protein release behavior. Journal of Applied Polymer Science, 100(6), 4614–4622.CrossRefGoogle Scholar
  68. Silva, H. D., Cerqueira, M. A., Souza, B. W. S., Ribeiro, C., Avides, M. C., Quintas, M. A. C., Coimbra, J. S. R., Carneiro-da-Cunha, M. G., & Vicente, A. A. (2011). Nanoemulsions of β-carotene using a high-energy emulsification-evaporation technique. Journal of Food Engineering, 102(2), 130–135.CrossRefGoogle Scholar
  69. Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2012). Nanoemulsions for food applications: development and characterization. Food and Bioprocess Technology, 5(3), 854–867.CrossRefGoogle Scholar
  70. Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2015a). Chapter 56 - Nanoemulsion-based systems for food applications. In B. I. Kharisov (Ed.), CRC concise encyclopedia of nanotechnology. Boca Raton: CRC Press by Taylor and Francis Group.Google Scholar
  71. Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2015b). Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering, 167, 89–98.CrossRefGoogle Scholar
  72. Siviero, A., Gallo, E., Maggini, V., Gori, L., Mugelli, A., Firenzuoli, F., & Vannacci, A. (2015). Curcumin, a golden spice with a low bioavailability. Journal of Herbal Medicine, 5(2), 57–70.CrossRefGoogle Scholar
  73. Souza, B. W. S., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Teixeira, J. A., Coimbra, M. A., & Vicente, A. A. (2012). Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 27(2), 287–292.CrossRefGoogle Scholar
  74. Spigno, G., Donsì, F., Amendola, D., Sessa, M., Ferrari, G., & De Faveri, D. M. (2013). Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. Journal of Food Engineering, 114(2), 207–214.CrossRefGoogle Scholar
  75. Szczepanowicz, K., Bazylińska, U., Pietkiewicz, J., Szyk-Warszyńska, L., Wilk, K. A., & Warszyński, P. (2015). Biocompatible long-sustained release oil-core polyelectrolyte nanocarriers: from controlling physical state and stability to biological impact. Advances in Colloid and Interface Science, 222, 678–691.PubMedCrossRefGoogle Scholar
  76. Tang, S. Y., Manickam, S., Wei, T. K., & Nashiru, B. (2012). Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrasonics Sonochemistry, 19(2), 330–345.PubMedCrossRefGoogle Scholar
  77. Tegge, G. (1989). Yalpani, M.: Polysaccharides - SYNTHESIS, MODIFICATIONS AND STRUCTURE/PROPERTY RELATIONS (Vol. 36 of the series “Studies in Organic Chemistry”). Elsevier Science Publishers, Amsterdam – Oxford – New York – Tokyo 1988. ISBN 0–444–43022–9. 522 pages, with over 40 tables and 130 schemes and illustrations. Price US $ 171,-; Dfl 325,-. Available from : P.O. Box 211, 1000 AE Amsterdam (The Netherlands) or P.O. Box 1663, Grand Central Station. New York, NY 10163 (U.S.A.). Starch - Stärke, 41(6), 244-244.Google Scholar
  78. Tomren, M. A., Másson, M., Loftsson, T., & Tønnesen, H. H. (2007). Studies on curcumin and curcuminoids: XXXI. Symmetric and asymmetric curcuminoids: Stability, activity and complexation with cyclodextrin. International Journal of Pharmaceutics, 338(1–2), 27–34.PubMedCrossRefGoogle Scholar
  79. Troncoso, E., Aguilera, J. M., & McClements, D. J. (2012). Influence of particle size on the in vitro digestibility of protein-coated lipid nanoparticles. Journal of Colloid and Interface Science, 382(1), 110–116.PubMedCrossRefGoogle Scholar
  80. Vachoud, L., Zydowicz, N., & Domard, A. (2000). Physicochemical behaviour of chitin gels. Carbohydrate Research, 326(4), 295–304.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Viana, R. B., da Silva, A. B. F., & Pimentel, A. S. (2012). Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Advances in Physical Chemistry, 2012, 14.CrossRefGoogle Scholar
  82. Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A., & Tegou, E. (2006). Applications of Fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta, 573–574, 459–465.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Yang, H., Irudayaraj, J., & Paradkar, M. M. (2005). Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry, 93(1), 25–32.CrossRefGoogle Scholar
  84. Yu, H., Shi, K., Liu, D., & Huang, Q. (2012). Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. Food Chemistry, 131(1), 48–54.CrossRefGoogle Scholar
  85. Yucel, C., Quagliariello, V., Iaffaioli, R. V., Ferrari, G., & Donsì, F. (2015). Submicron complex lipid carriers for curcumin delivery to intestinal epithelial cells: Effect of different emulsifiers on bioaccessibility and cell uptake. International Journal of Pharmaceutics, 494(1), 357–369.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Zhao, L., Du, J., Duan, Y., Zang, Y., Zhang, H., Yang, C., Cao, F., & Zhai, G. (2012). Curcumin loaded mixed micelles composed of Pluronic P123 and F68: Preparation, optimization and in vitro characterization. Colloids and Surfaces B: Biointerfaces, 97, 101–108.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.International Iberian Nanotechnology LaboratoryBragaPortugal
  3. 3.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly
  4. 4.ProdAl Scarl, Competence Center on Agro-Food ProductionsUniversity of SalernoFiscianoItaly

Personalised recommendations