Advertisement

The Effect of Ultrasonic Probe Size for Effective Ultrasound-Assisted Pregelatinized Starch

  • Elahe AbediEmail author
  • Kiana Pourmohammadi
  • Mastaneh Jahromi
  • Mehrdad Niakousari
  • Luisa Torri
Original Paper
  • 24 Downloads

Abstract

This study aimed to investigate the suitability of ultrasonication as an innovative pregelatinization method. The effect of ultrasonic probe diameter for effective pregelatinization on the physicochemical properties (color, solubility, and swelling), crystallinity (by X-ray diffraction), pasting properties (by rapid visco analysis, RVA), morphology (by scanning electron microscopy), and thermal behavior (by differential scanning calorimetry) of wheat and tapioca starch were compared. The ultrasonication power, temperature, frequency, time, and probe diameter were optimized via response surface methodology (RSM). The RSM results demonstrated that increasing temperature raised the solubility of ultrasound-pregelatinized wheat and tapioca starch, more than increasing the power input and treatment time. According to the RVA data, the cold and complex viscosity of the samples decreased as follows: ultrasound-assisted pregelatinized wheat starch (probe diameter, 100 mm) > ultrasound-assisted pregelatinized tapioca starch (probe diameter, 100 mm) > ultrasound-assisted pregelatinized wheat starch (probe diameter, 20 mm) > ultrasound-assisted pregelatinized tapioca starch (probe diameter, 20 mm). Overall, ultrasound-assisted pregelatinization using a probe of 100 mm in diameter had a stronger effect on wheat starch than tapioca starch. In conclusion, ultrasonication using a probe with a high surface area is a suitable method of starch pregelatinization.

Keywords

Starch Geometric probe Ultrasonication Pregelatinization Response surface methodology 

Abbreviations

NTS

Native tapioca starch

NWS

Native wheat starch

UPTS2

Ultrasound-assisted pregelatinized tapioca starch at probe size 20 mm

UPTS10

Ultrasound-assisted pregelatinized tapioca starch at probe size 100 mm

UPWS2

Ultrasound-assisted pregelatinized wheat starch at probe size 20 mm

UPTS10

Ultrasound-assisted pregelatinized wheat starch at probe size 100 mm

Notes

References

  1. AACC. (2000). Approved methods of the American Association of Cereal Chemists (tenth ed.). St. Paul: American Association of Cereal Chemists.Google Scholar
  2. Abedi, E., Sahari, M. A., Barzegar, M., & Azizi, M. H. (2015). Optimisation of soya bean oil bleaching by ultrasonic processing and investigate the physico-chemical properties of bleached soya bean oil. International Journal of Food Science and Technology, 50(4), 857–863.  https://doi.org/10.1111/ijfs.12689.CrossRefGoogle Scholar
  3. Abedi, E., Sahari, M. A., & Hashemi, S. M. B. (2017). Accelerating bleaching of soybean oil by ultrasonic horn and bath under sparge of helium, air, argon and nitrogen gas. Journal of Food Processing and Preservation, 41(3), e12987.  https://doi.org/10.1111/jfpp.12987.CrossRefGoogle Scholar
  4. Abedi, E., Pourmohammadi, K., & Abbasi, S. (2019). Dual-frequency ultrasound for ultrasonic-assisted esterification. Food Science and Nutrition.  https://doi.org/10.1002/fsn3.1115.
  5. Adedokun, M. O., & Itiola, O. A. (2010). Material properties and compaction characteristics of natural and pregelatinized forms of four starches. Carbohydrate Polymers, 79(4), 818–824.  https://doi.org/10.1016/j.carbpol.2009.10.009.CrossRefGoogle Scholar
  6. Alcázar-Alay, S. C., & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35(2), 215–236.  https://doi.org/10.1590/1678-457X.6749.CrossRefGoogle Scholar
  7. Amini, A. M., Razavi, S. M. A., & Mortazavi, S. A. (2015). Morphological, physicochemical, and viscoelastic properties of sonicated corn starch. Carbohydrate Polymers, 122, 282–292.  https://doi.org/10.1016/j.carbpol.2015.01.020.CrossRefGoogle Scholar
  8. Aydar, A. Y. (2018). Utilization of response surface methodology in optimization of extraction of plant materials. In V. Silva (Ed.), Statistical approaches with emphasis on design of experiments applied to chemical processes (pp. 157–169). London: InTech.  https://doi.org/10.5772/intechopen.73690.Google Scholar
  9. Chan, H. T., Bhat, R., & Karim, A. A. (2010). Effects of sodium dodecyl sulphate and sonication treatment on physicochemical properties of starch. Food Chemistry, 120(3), 703–709.  https://doi.org/10.1016/j.foodchem.2009.10.066.CrossRefGoogle Scholar
  10. Cheng, X.-F., Zhang, M., Adhikari, B., & Islam, M. N. (2014). Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically dehydrated strawberry: a combined NMR and DSC Study. Food and Bioprocess Technology, 7(10), 2782–2792.  https://doi.org/10.1007/s11947-014-1355-1.CrossRefGoogle Scholar
  11. Chiu, C. W., & Solarek, D. (2009). Modification of starches. In J. N. BeMiller & R. L. Whistler (Eds.), Starch: chemistry and technology third ed. (pp. 629–655). London: Academic Press.CrossRefGoogle Scholar
  12. Cooke, D., & Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydrate Research, 227, 103–112.  https://doi.org/10.1016/0008-6215(92)85063-6.CrossRefGoogle Scholar
  13. Czechowska-Biskup, R., Rokita, B., Lotfy, S., Ulanski, P., & Rosiak, J. M. (2005). Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydrate Polymers, 60(2), 175–184.  https://doi.org/10.1016/j.carbpol.2004.12.001.CrossRefGoogle Scholar
  14. Dehghannya, J., Gorbani, R., & Ghanbarzadeh, B. (2015). Effect of ultrasound-assisted osmotic dehydration pretreatment on drying kinetics and effective moisture diffusivity of mirabelle plum. Journal of Food Processing and Preservation, 39(6), 2710–2717.  https://doi.org/10.1111/jfpp.12521.CrossRefGoogle Scholar
  15. Dilorio, F., & Hardy, K. A. (1995). Quick start to data analysis with SAS. London: Duxbury Press.Google Scholar
  16. Fernandes, F. A. N., Oliveira, F. I. P., & Rodrigues, S. (2008). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1(4), 339–345.  https://doi.org/10.1007/s11947-007-0019-9.CrossRefGoogle Scholar
  17. Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., AcostaAparicio, V. M., & Blanco, A. (2007). Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technology, 25(11), 1893–1901.  https://doi.org/10.1080/07373930701677371.CrossRefGoogle Scholar
  18. Herceg, I. L., Jambrak, A. R., Šubarić, D., Brnčić, M., Brnčić, S. R., Badanjak, M., Tripalo, B., Ježek, D., Novotni, D., & Herceg, Z. (2010). Texture and pasting properties of ultrasonically treated corn starch. Czech Journal of Food Sciences, 28, 83–93.  https://doi.org/10.17221/50/2009-CJFS.CrossRefGoogle Scholar
  19. Huang, Q., Li, L., & Fu, X. (2007). Ultrasound effects on the structure and chemical reactivity of cornstarch granules. Starch, 59(8), 371–378.  https://doi.org/10.1002/star.200700614.CrossRefGoogle Scholar
  20. Iida, Y., Tuziuti, T., Yasui, K., Towata, A., & Kozuka, T. (2008). Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science and Emerging Technologies, 9(2), 140–146.  https://doi.org/10.1016/j.ifset.2007.03.029.CrossRefGoogle Scholar
  21. Jambrak, A. R., Herceg, Z., Šubarić, D., Babić, J., Brnčić, M., Brnčić, S. R., Bosiljkov, T., Čvek, D., Tripalo, B., & Gelo, J. (2010). Ultrasound effect on physical properties of corn starch. Carbohydrate Polymers, 79(1), 91–100.  https://doi.org/10.1016/j.carbpol.2009.07.051.CrossRefGoogle Scholar
  22. Li, W., Cao, F., Fan, J., Ouyang, S., Luo, Q., Zheng, J., & Zhang, G. (2014). Physically modified common buckwheat starch and their physicochemical and structural properties. Food Hydrocolloids, 40, 237–244.  https://doi.org/10.1016/j.foodhyd.2014.03.012.CrossRefGoogle Scholar
  23. Luo, Z., Fu, X., He, X., Luo, F., Gao, Q., & Yu, S. (2008). Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content. Starch, 60(11), 646–653.  https://doi.org/10.1002/star.200800014.CrossRefGoogle Scholar
  24. Majzoobi, M., Radi, M., Farahnaky, A., Jamalian, J., Tongdang, T., & Mesbahi, G. (2011). Physicochemical properties of pre-gelatinized wheat starch produced by a twin drum drier. Journal of Agricultural Science and Technology, 13, 193–202.Google Scholar
  25. Montalbo-Lomboy, M., Khanal, S. K., van Leeuwen, J. H., Raman, D. R., Dunn, L., Jr., & Grewell, D. (2010). Ultrasonic pretreatment of corn slurry for saccharification: a comparison of batch and continuous systems. Ultrasonics Sonochemistry, 17(5), 939–946.  https://doi.org/10.1016/j.ultsonch.2010.01.013.CrossRefGoogle Scholar
  26. Morrison, W. R., Tester, R. F., & Gidley, M. J. (1994). Properties of damaged starch granules. II. Crystallinity, molecular order and gelatinisation of ball-milled starches. Journal of Cereal Science, 19(3), 209–217.  https://doi.org/10.1006/jcrs.1994.1028.CrossRefGoogle Scholar
  27. Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: product and process optimization using designed experiments (second ed.). New York: John Wiley & Sons.Google Scholar
  28. Nakorn, K. N., Tongdang, T., & Sirivongpaisal, P. (2009). Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch, 61(2), 101–108.  https://doi.org/10.1002/star.200800008.CrossRefGoogle Scholar
  29. Pakbin, B., Rezaei, K., & Haghighi, M. (2015). An introductory review of applications of ultrasound in food drying processes. Journal of Food Processing and Technology, 6(01), 1000410.  https://doi.org/10.4172/2157-7110.1000410.Google Scholar
  30. Pourmohammadi, K., Abedi, E., Hashemi, S. M. B., & Torri, L. (2018). Effects of sucrose, isomalt and maltodextrin on microstructural, thermal, pasting and textural properties of wheat and cassava starch gel. International Journal of Biological Macromolecules, 120, 1935–1943.  https://doi.org/10.1016/j.ijbiomac.2018.09.172.CrossRefGoogle Scholar
  31. Pourmohammadi, K., Abedi, E., Farahmandi, S., Mahmoudi, M. R., Hashemi, S. M. B., & Torri, L. (2019). Modelling the effects of corn and wheat resistant starch on dough: a study of fundamental and empirical texture properties and the quality of dietary fibre-enriched biscuits using backward multiple polynomial regression. Journal of Food Process Engineering, 42(2), e12962.  https://doi.org/10.1111/jfpe.12962.CrossRefGoogle Scholar
  32. Singh, S., & Kaur, M. (2017). Steady and dynamic shear rheology of starches from different oat cultivars in relation to their physicochemical and structural properties. International Journal of Food Properties, 20(12), 3282–3294.  https://doi.org/10.1080/10942912.2017.1286504.CrossRefGoogle Scholar
  33. Sujka, M., & Jamroz, J. (2013). Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids, 31(2), 413–419.  https://doi.org/10.1016/j.foodhyd.2012.11.027.CrossRefGoogle Scholar
  34. Yu, S., Zhang, Y., Ge, Y., Zhang, Y., Sun, T., Jiao, Y., & Zheng, X. Q. (2013). Effects of ultrasound processing on the thermal and retrogradation properties of nonwaxy rice starch. Journal of Food Process Engineering, 36(6), 793–802.  https://doi.org/10.1111/jfpe.12048.CrossRefGoogle Scholar
  35. Zheng, J., Li, Q., Hu, A., Yang, L., Lu, J., Zhang, X., & Lin, Q. (2013). Dual-frequency ultrasound effect on structure and properties of sweet potato starch. Starch, 65(7-8), 621–627.  https://doi.org/10.1002/star.201200197.CrossRefGoogle Scholar
  36. Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends in Food Science and Technology, 43(1), 1–17.  https://doi.org/10.1016/j.tifs.2014.12.008.CrossRefGoogle Scholar
  37. Zhu, J., Li, L., Chen, L., & Li, X. (2012). Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocolloids, 29(1), 116–122.  https://doi.org/10.1016/j.foodhyd.2012.02.004.CrossRefGoogle Scholar
  38. Zobel, H. F., Young, S. N., & Rocca, L. A. (1988). Starch gelatinization: an X-ray diffraction study. Cereal Chemistry, 65, 443–446.Google Scholar
  39. Zuo, J. Y., Knoerzer, K., Mawson, R., Kentish, S., & Ashokkumar, M. (2009). The pasting properties of sonicated waxy rice starch suspensions. Ultrasonics Sonochemistry, 16(4), 462–468.  https://doi.org/10.1016/j.ultsonch.2009.01.002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and TechnologyFasa UniversityFasaIran
  2. 2.Department of Food Science and TechnologyShiraz UniversityShirazIran
  3. 3.University of Gastronomic SciencesBraItaly

Personalised recommendations