Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 10, pp 1787–1797 | Cite as

Candelilla Wax-Based Coatings and Films: Functional and Physicochemical Characterization

  • Jorge A. Aguirre-Joya
  • Miguel A. Cerqueira
  • Janeth Ventura-Sobrevilla
  • Miguel A. Aguilar-Gonzalez
  • Enrique Carbó-Argibay
  • Lorenzo Pastrana Castro
  • Cristobal Noé AguilarEmail author
Original Paper

Abstract

Active coatings and films made from pectin, candelilla wax, aloe mucilage, and glycerol were functionalized with an extract rich in polyphenols from Larrea tridentata (Polyphenol Larrea extract: PLE) leaves at different concentrations (320 to 920 ppm). Antimicrobial capacity was evaluated on avocados by the inoculation of spores from phytopathogenic fungi Colletotrichum gloesporioides and Alternaria alternata. Coatings with 920 ppm of PLE presented the major antimicrobial capacity leading to 22.0 ± 0.4% of endocarp damage for C. gloesporioides and 24.5 ± 0.6% for A. alternata when compared to uncoated (control) avocados (44.8 ± 5.0% for C. gloesporioides and 47.9 ± 9.3% for A. alternata). The coating formulation with 920 ppm of PLE, which presents the highest antimicrobial capacity, was chosen for further evaluation and characterized. The coatings were evaluated in terms of stability, charge, pH, viscosity, and density, and some authors reported stability at 7 days. The films were evaluated by scanning electronic microscopy (SEM), X-ray diffraction, Fourier transformed infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and contact angle measurements. The surface topography shows that the presence and increase of PLE concentrations leads to a higher roughness of the films, and by FTIR was possible to observe the effect of the PLE incorporation on the functional groups of the film matrix. Contact angle was not affected by the incorporation of PLE in the films. The developed bioactive coating is effective to control endocarp damage by fungus invasion and thus protect avocados during storage.

Keywords

Active films Active coatings Physicochemical properties Candelilla Pectin Aloe vera Antifungal capacity Avocado 

Notes

Funding information

Financial support was provided by National Forestry Commission of Mexico (CONAFOR), Autonomous University of Coahuila (UAdeC), Program Marie Curie of the European Union (project: Biotechnologies to valorize the regional food Biodiversity in Latin America, BiValBi), and BIOINGENIO S.A. de C.V. This research was supported by Norte Regional Operational Program 2014-2020 (Norte2020) through the European Regional Development Fund (ERDF) Nanotechnology based functional solutions (NORTE-01-0145-FEDER-000019).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abdel-Aziz, S. M., Asker, M. M. S., Keera, A. A., & Mahmoud, M. G. (2016). Microbial food spoilage: control strategies for shelf life extension. In N. Garg et al. (Eds.), Microbes in food and health (pp. 239–264). New York: Springer.  https://doi.org/10.1007/978-3-319-25277-3_13.Google Scholar
  2. Aguirre-Joya, J. A., Ventura-Sobrevilla, J., Martínez-Vazquez, G., Ruelas-Chacón, X., Rojas, R., Rodríguez-Herrera, R., & Aguilar, C. N. (2017). Effects of a natural bioactive coating on the quality and shelf life prolongation at different storage conditions of avocado (Persea americana Mill.) cv. Hass. Food Packaging and Shelf Life, 14, 102–107.  https://doi.org/10.1016/j.fpsl.2017.09.003.Google Scholar
  3. Alvarez-Perez, O. B., Montañez, J., Aguilar, C. N., & Rojas, R. (2015). Pectin-candelilla wax: an alternative mixture for edible films. The Journal of Microbiology, Biotechnology and Food Sciences, 5(2), 167–171.  https://doi.org/10.15414/jmbfs.2015.5.2.167-171.Google Scholar
  4. Amini, A. M., & Razavi, S. M. A. (2016). A fast and efficient approach to prepare starch nanocrystals from normal corn starch. Food Hydrocolloids, 57, 132–158.  https://doi.org/10.1016/j.foodhyd.2016.01.022.Google Scholar
  5. Arrebol, A. E., Sivakumar, D., Bacigalupo, R., & Korsten, L. (2010). Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Protection, 29(4), 369–377.  https://doi.org/10.1016/j.cropro.2009.08.001.Google Scholar
  6. Arteaga, S., Andrade-Cetto, A., & Cardenas, R. (2005). Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. Journal of Ethnopharmacology, 98(3), 231–239.  https://doi.org/10.1016/j.jep.2005.02.002.Google Scholar
  7. Bayés-García, L., Calvet, T., Cuevas-Diarte, M. A., & Ueno, S. (2017). From trioleoyl glycerol to extra virgin olive oil through multicomponent triacylglycerol mixtures: crystallization and polymorphic transformation examined with differential scanning calorimetry and X-ray diffraction techniques. Food Research International, 99, 476–484.  https://doi.org/10.1016/j.foodres.2017.06.015.Google Scholar
  8. Bernhardt, D. C., Pérez, C. D., Fissore, E. N., De’Nobili, M. D., & Rojas, A. M. (2017). Pectin-based composite film: effect of corn husk fiber concentration on their properties. Carbohydrate Polymers, 164, 13–22.  https://doi.org/10.1016/j.carbpol.2017.01.031.Google Scholar
  9. Bill, M., Sivakumar, D., Korsten, L., & Thompson, A. K. (2014). The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop Protection, 54, 159–157.  https://doi.org/10.1016/j.cropro.2014.06.015.Google Scholar
  10. Cerqueira, M. A., Souza, B. W. S., Simões, J., Teixeira, J. A., Domingues, M. R. M., Coimbra, M. A., & Vicente, A. A. (2011). Structural and thermal characterization of galactomannans from non-conventional sources. Carbohydrate Polymers, 83(1), 179–185.  https://doi.org/10.1016/j.carbpol.2010.07.036.Google Scholar
  11. Cerqueira, M. A., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2012). Effect of glycerol and corn oil on physicochemical properties of polysaccharide films-a comparative study. Food Hydrocolloids, 27(1), 175–184.  https://doi.org/10.1016/j.foodhyd.2011.07.007.Google Scholar
  12. Chetouani, A., Elkolli, M., Bounekhel, M., Benachour, D. (2014). Synthesis and properties of novel hydrogels from oxidized pectin crosslinked gelatin for biomedical applications, Polymer Bulletin, 71(9), 2303–2316.  https://doi.org/10.1007/s0028.
  13. Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88(2), 159–168.  https://doi.org/10.1016/j.jfoodeng.2008.02.002.Google Scholar
  14. Chiumarelli, M., & Hubinger, M. D. (2012). Food hydrocolloids stability, solubility, mechanical and barrier properties of cassava starch e Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids, 28(1), 59–67.  https://doi.org/10.1016/j.foodhyd.2011.12.006.Google Scholar
  15. Choi, A. J., Kim, C. J., Cho, Y. J., Hwang, J. K., & Kim, C. T. (2011). Characterization of capsaicin-loaded nanoemulsions stabilized with alginate and chitosan by self-assembly. Food and Bioprocess Technology, 4(6), 119–1126.  https://doi.org/10.1007/s11947-011-0568-9.Google Scholar
  16. Cunningham-Oakes, E., Soren, O., Moussa, C., Rathor, G., Liu, Y., Coates, A., & Hu, Y. (2015). Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo. Frontiers in Microbiology, 6, 1195.  https://doi.org/10.3389/fmicb.2015.01195.Google Scholar
  17. Davis, R. A., Hofmann, A., Osman, A., Hall, R. A., Muhlschlegel, F. A., Vullo, D., Innocenti, A., Supuran, C. T., & Poulsen, S. A. (2011). Natural product-based phenols as novel probes for mycobacterial and fungal carbonic anhydrases. Journal of Medicinal Chemistry, 54(6), 1682–1692.  https://doi.org/10.1007/s11947-011-0568-9.Google Scholar
  18. De León-Zapata, M. A., Pastrana-Castro, L., Barbosa-Pereira, L., Rua-Rodríguez, M. L., Saucedo, S., Ventura-Sobrevilla, J., Salinas-Jasso, T. A., Rodríguez-Herrera, R., & Aguilar, C. N. (2017). Nanocoating with extract of tarbush to retard Fuji apples senescence. Postharvest Biology and Technology, 134, 67–75.  https://doi.org/10.1016/j.postharvbio.2017.08.010.Google Scholar
  19. Del Vecchyo-Tenorio, G., Rodríguez-Cruz, M., Andrade-Cetto, A., & Cárdenas-Vázquez, R. (2016). Creosote bush (Larrea tridentata) improves insulin sensitivity and reduces plasma and hepatic lipids in hamsters fed a high fat and cholesterol diet. Frontiers in Pharmacology, 28(7), 194.  https://doi.org/10.3389/fphar.2016.00194.Google Scholar
  20. Donhowe, I. G., & Fennema, O. (1993). Water vapor and oxygen permeability of wax films. Journal of American Oil Chemistis Society, 70(9), 867–873.  https://doi.org/10.1007/BF02545345.Google Scholar
  21. Espitia, P. J. P, Wen-Xian D., Avena-Bustillos, R. J., Ferreira, N. F., McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties. A review Food Hydrocolloids, 35, 287–296.  https://doi.org/10.1016/j.foodhyd.2013.06.005.
  22. Food and Drug Administration (FDA). Accessed on 02/06/2016. Available at: http://www.ecfr.gov/cgi-bin/text-idx?SID=21de2518966bfe482299c52c6e5ae505&mc=true&node=se21.3.184_11588&rgn=div8.
  23. Gnabre, J., Bates, R., & Huang, R. C. (2015). Creosote bush lignans for human disease treatment and prevention: Perspectives on combination therapy. Journal of Traditional and Complementary Medicine, 5(3), 119–126.  https://doi.org/10.1016/j.jtcme.2014.11.024.Google Scholar
  24. Guzmán-Beltrán, S., Rubio-Badillo, M. A., Juárez, E., Hernández-Sánchez, F., & Torres, M. (2016). Nordihydroguaiaretic acid (NDGA) and α-mangostin inhibit the growth of Mycobacterium tuberculosis by inducing autophagy. International Immunopharmacology, 31, 149–157.  https://doi.org/10.1016/j.intimp.2015.12.027.Google Scholar
  25. Harron, A. F., Powell, M. J., Nunez, A., & Moreau, R. A. (2017). Analysis of sorghum wax and carnauba wax by reversed phase liquid chromatography mass spectrometry. Industrial Crops and Products, 98, 116–129.  https://doi.org/10.1016/j.indcrop.2016.09.015.Google Scholar
  26. Heron, S., & Yarnell, E. (2001). The safety of low-dose Larrea tridentata (DC) Coville (creosote bush or chaparral): a retrospective clinical study. Journal of Alternative and Complementary Medicine, 7(2), 175–185.  https://doi.org/10.1089/107555301750164262.Google Scholar
  27. Jafari, S. M., Khanzadi, M., Mirzaei, H., Dehnad, D., Chegini, F. K., & Maghsoudlou, Y. (2015). Hydrophobicity, thermal and micro-structural properties of whey protein concentrate–pullulan–beeswax films. International Journal of Biological Macromolecules, 80, 506–511.  https://doi.org/10.1016/j.ijbiomac.2015.07.017.Google Scholar
  28. Jara, A. H., Daza, L. D., Aguirre, D. M., Muñoz, J. A., Solanilla, J. F., & Váquiro, H. A. (2018). Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. Biological Macromolecules, 113, 1233–1240.  https://doi.org/10.1016/j.ijbiomac.2018.03.057.Google Scholar
  29. Junqueira-Gonçalves, M. P., Alarcón, E., & Niranjan, K. (2013). Development of antifungal packaging for berries extruded from recycled PET. Food Control, 33(2), 455–460.  https://doi.org/10.1016/j.foodcont.2013.03.031.Google Scholar
  30. Kouassi, K. H. S., Bajji, M., & Jijakli, H. (2012). The control of postharvest blue and green molds of citrus in relation with essential oil–wax formulations, adherence and viscosity. Postharvest Biology and Technology, 73, 122–128.  https://doi.org/10.1016/j.postharvbio.2012.06.008.Google Scholar
  31. Kowalczyk, D., & Baraniak, B. (2014). Effect of candelilla wax on functional properties of biopolymer emulsion films - a comparative study. Food Hydrocolloids, 41, 195–209.  https://doi.org/10.1016/j.foodhyd.2014.04.004.Google Scholar
  32. Liu, L., Cao, J., Huang, J., Cai, Y., & Yao, J. (2010). Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresource Technology, 101(9), 3268–3273.  https://doi.org/10.1016/j.biortech.2009.12.062.Google Scholar
  33. Lu, J. M., Nurko, J., Weakley, S. M., Jiang, J., Kougias, P., Lin, P. H., Yao, Q., & Chen, C. (2010). Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives: an update. Medical Science Monitor, 16, 93–100.Google Scholar
  34. Luo, Y., Zhang, B., Whent, M., Yu, L., & Wang, Q. (2011). Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces B: Biointerfaces, 85(2), 145–152.  https://doi.org/10.1016/j.colsurfb.2011.02.020.Google Scholar
  35. Martins, S., Aguilar, C. N., Teixeira, J. A., & Mussato, S. I. (2012). Bioactive compounds (Phytostrogens) recovery from Larrea tridentate leaves by solvents extraction. Separation and Purification Technology, 88, 163–167.  https://doi.org/10.1016/j.seppur.2011.12.020.Google Scholar
  36. Martins, S., Amorim, E. L. C., Sobrinho, T. J. S. P., Saraiva, A. M., Pisciottano, M. N. C., Aguilar, C. N., Teixeira, J. A., & Mussatto, S. I. (2013). Antibacterial activity of crude methanolic extract and fractions obtained from Larrea tridentata leaves. Industrial Crops and Products, 41, 306–311.  https://doi.org/10.1016/j.indcrop.2012.04.037.Google Scholar
  37. Moditsi, M., Lazaridou, A., Moschakis, T., & Biliaderis, C. G. (2014). Modifying the physical properties of dairy protein films for controlled release of antifungal agents. Food Hydrocolloid, 39, 195–203.  https://doi.org/10.1016/j.foodhyd.2014.01.011.Google Scholar
  38. Mpho, M., Sivakumar, D., Sellamuthu, P. S., & Bautista-Banos, S. (2013). Use of lemongrass oil and modified atmosphere packaging on control of anthracnose and quality maintenance in avocado cultivars. Journal of Food Quality, 36(3), 657–670.  https://doi.org/10.1111/jfq.12027.Google Scholar
  39. Nakayama, T., Hashimoto, T., Kajiya, K., & Kumazawa, S. (2000). Affinity of polyphenols for lipid bilayers. Biofactors, 13(1-4), 147–151.  https://doi.org/10.1002/biof.5520130124.Google Scholar
  40. NguyenVanLong, N., Joly, C., & Dantingy, P. (2016). Active packaging with antifungal activities. International Journal of Food Microbiology, 220(2), 73–90.  https://doi.org/10.1016/j.ijfoodmicro.2016.01.001.Google Scholar
  41. Oregel-Zamudio, E., Angoa-Perez, M. V., Oyoque-Salcedo, G., Aguilar, C. N., & Mena-Violante, H. G. (2017). Effect of candelilla wax edible coatings combined with bacteria biocontrol on strawberry quality during the shelf-life. Scientia Horticulturae, 214, 273–279.  https://doi.org/10.1016/j.scienta.2016.11.038.Google Scholar
  42. Pillai, S. K., Maubane, L., Sinha-Ray, S., Khumalo, V., Bill, M., & Sivakumar, D. (2016). Development of antifungal films based on low-density polyethylene and thyme oil for avocado packaging. Journal of Applied Polymer Science, 133(8), 1–9.  https://doi.org/10.1002/app.43045.Google Scholar
  43. Realini, C. E., & Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Science, 98(3), 404–419.  https://doi.org/10.1016/j.meatsci.2014.06.031.Google Scholar
  44. Regnier, T., Combrinck, S., du Plooy, W., & Botha, B. (2010). Evaluation of Lippia scaberrima essential oil and some pure terpenoid constituents as postharvest mycobiocides for avocado fruit. Postharvest Biology and Technology, 57(3), 176–182.  https://doi.org/10.1016/j.postharvbio.2010.03.010.Google Scholar
  45. Rojas, R., Vicente, A., & Aguilar, C. N. (2015). Advances in fruits and vegetables preservation with edible films. B.CEPPA. Curitiba, 33(2), 43–56.  https://doi.org/10.5380/cep.v33i2.47168.Google Scholar
  46. SAGARPA, (2016). Mexican Secretary of Agriculture and Rural Development. Available at https://www.gob.mx/agricultura. Accesed 11 August 2016.
  47. Sánchez-Aldana, D., Contretas-Esuivel, J. C., Nevárez-Morillón, G. V., & Aguilar, C. N. (2014). Characterization of edible films from pectic extracts and essential oil from Mexican lime (Spanish). CyTA - Journal of Food, 13(1), 17–25.  https://doi.org/10.1080/19476337.2014.904929.Google Scholar
  48. Saucedo-Pompa, S., Rojas-Molina, R., Aguilera-Carbó, A. F., Saenz-Galindo, A., De la Garza, H., Jasso-Cantú, D., & Aguilar, C. N. (2009). Edible film based on candelilla wax to improve the shelf life and quality of avocado. Food Research International, 42(4), 511–515.  https://doi.org/10.1016/j.foodres.2009.02.017.Google Scholar
  49. Seslija, S., Nesic, A., Ruzic, J., Krusic, M. K., Velickovic, S., Avolio, R., Santagata, G., & Malinconico, M. (2017). Edible blend films of pectin and poly(ethylene glycol): preparation and physico-chemical evaluation. Food Hydrocolloids, 77, 494–501.  https://doi.org/10.1016/j.foodhyd.2017.10.027.Google Scholar
  50. SIAP, (2016). Agri-food and fisheries information service. Available at https://www.gob.mx/siap. Accesed 11 August 2016.
  51. Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2015). Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering, 167, 89–98.  https://doi.org/10.1016/j.jfoodeng.2015.07.037.Google Scholar
  52. Uz, M., & Altinkaya, S. A. (2011). Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. LWT Food Science and Technology, 44(10), 2302–2309.  https://doi.org/10.1016/j.lwt.2011.05.003.Google Scholar
  53. Valdés, A., Burgos, N., Jiménez, A., & Garrigós, M. C. (2015). Natural pectin polysaccharides as edible coatings. Coatings, 5(4), 865–886.  https://doi.org/10.3390/coatings5040865.Google Scholar
  54. Valle-Guadarrama, S., Morales-Cabrera, M., Peña-Valdivia, C. B., Mora-Rodríguez, B., Alia-Tejacal, I., Corrales-García, J., & Gómez-Cruz, A. (2013). Oxidative/fermentative behaviour in the flesh of “Hass” avocado fruits under natural and controlled atmosphere conditions. Food and Bioprocess Technology, 6(1), 272–282.  https://doi.org/10.1007/s11947-011-0747-8.Google Scholar
  55. Vieira, J. M., Flores-López, M. L., Jasso-de-Rodríguez, D., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology, 116, 88–97.  https://doi.org/10.1016/j.postharvbio.2016.01.011.Google Scholar
  56. Weng, H., Boon, T., Yee, P., Abas, F., Ming, O., Wang, Y., et al. (2018). Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified β-lactoglobulin fibrils-chitosan complex. Food Research International, 105(August 2017), 482–491.  https://doi.org/10.1016/j.foodres.2017.11.034.Google Scholar
  57. Yao, L., & Wang, T. (2012). Textural and physical properties of biorenewable “waxes” containing partial acylglycerides. Journal of American Chemical Society, 89(1), 155–166.  https://doi.org/10.1007/s11746-011-1896-7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jorge A. Aguirre-Joya
    • 1
  • Miguel A. Cerqueira
    • 2
  • Janeth Ventura-Sobrevilla
    • 1
  • Miguel A. Aguilar-Gonzalez
    • 3
  • Enrique Carbó-Argibay
    • 2
  • Lorenzo Pastrana Castro
    • 2
  • Cristobal Noé Aguilar
    • 1
    Email author
  1. 1.Department of Food Research (DIA-UAdeC), School of ChemistryUniversidad Autónoma de CoahuilaSaltilloMexico
  2. 2.Life Science DepartmentINL - International Iberian Nanotechnology LaboratoryBragaPortugal
  3. 3.Center for Research and Advanced Studies of the National Polytechnic Institute of Mexico (CINVESTAV-IPN)Unit SaltilloSaltilloMexico

Personalised recommendations