Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 10, pp 1733–1740 | Cite as

The Role of Glycogen Synthase Kinase-3 in Gibberellic Acid-Induced Chilling Tolerance and Defense Response in Postharvest Peach Fruit

  • Caifeng Jiao
  • Yuquan DuanEmail author
Original Paper
  • 71 Downloads

Abstract

The induction of chilling tolerance and defense response by glycogen synthase kinase-3 (GSK-3) under gibberellic acid (GA3) treatment in peach fruit was explored at 4 °C up to 28 days. The fruits were treated with exogenous GA3 and bikinin (GSK-3 inhibitor). Results showed that exogenous GA3 alleviated chilling injury, and upregulated endogenous GA3 content in peach fruit. Furthermore, GSK-3 expression was activated by exogenous GA3 treatment. GA3 also upregulated gene expression of superoxide dismutase, peroxidase, catalase, glutathione reductase, glutathione S-transferase, and ascorbate peroxidase. Additionally, GA3 enhanced gene and protein expression of small ubiquitin-like modifier and gene expression of methionine sulfoxide reductase, and weakened gene expression of lipoxygenase and phospholipase D. These above impacts stimulated by exogenous GA3 were blocked by the addition of bikinin. Overall, GSK-3 was involved in stimulation of chilling tolerance and defense response under GA3 treatment in postharvest peach fruit.

Keywords

GA3 GSK-3 Antioxidant system Small ubiquitin-like modifier and methionine sulfoxide reductase Lipoxygenase and phospholipase D Peach fruit 

Notes

Supplementary material

11947_2019_2338_MOESM1_ESM.doc (56 kb)
ESM 1 (DOC 43 kb)

References

  1. Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 728–749.CrossRefGoogle Scholar
  2. Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21–34.CrossRefGoogle Scholar
  3. Bigelow, D. J., & Squier, T. C. (2005). Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochimica et Biophysica Acta-Biomembranes, 1703(2), 121–134.CrossRefGoogle Scholar
  4. Chaves, M. M., & Oliveira, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365–2384.CrossRefGoogle Scholar
  5. Conti, L., Donnel, E. O., Price, J., Love, A., Dominy, P., & Sadanandom, A. (2007). SUMO proteases regulate ROS production in Arabidopsis. Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology, 146(4), S260–S260.CrossRefGoogle Scholar
  6. Crisosto, C. H., & Mitchell, F. G. (2002). Postharvest handling systems: stone fruits. In A. A. Kader (Ed.), Postharvest technology of horticultural crops. Davis: University of California.Google Scholar
  7. Dagar, A., Weksler, A., Friedman, H., & Lurie, S. (2012). Gibberellic acid (GA3) application at the end of pit ripening: effect on ripening and storage of two harvests of ‘September snow’ peach. Scientia Horticulturae, 140, 125–130.CrossRefGoogle Scholar
  8. Dai, C., & Wang, M. H. (2010). Expression pattern of a peptide methionine sulfoxide reductase gene from tomato (Solanum lycopersicum) in response to abiotic and oxidative stresses. Journal of Korean Society for Applied Biological Chemistry, 53(2), 127–132.CrossRefGoogle Scholar
  9. Ding, Y., Wei, W., Wu, W., Davis, R. E., Jiang, Y., Lee, I. M., Hammond, R. W., Shen, L., Sheng, J. P., & Zhao, Y. (2013). Role of gibberellic acid in tomato defence against potato purple top phytoplasma infection. Annals of Applied Biology, 162(2), 191–199.CrossRefGoogle Scholar
  10. Ding, Y., Zhu, Z., Zhao, J., Nie, Y., Zhang, Y., Sheng, J., Meng, D., Mao, H., & Tang, X. (2016). Effects of postharvest brassinolide treatment on the metabolism of white button mushroom (Agaricus bisporus) in relation to development of browning during storage. Food and Bioprocess Technology, 9(8), 1327–1334.CrossRefGoogle Scholar
  11. Eilert, U. (1987). Elicitation: methodology and aspects of application. Cell culture and somatic cell genetics of plants, Academic Press, San Diego, Calif., 4, 153–196.Google Scholar
  12. Fei, E., Jia, N., Yan, M., Ying, Z., Sun, Q., Wang, H., Zhang, T., Ma, X., Ding, H., Yao, X., Shi, Y., & Wang, G. (2006). SUMO-1 modification increases human SOD1 stability and aggregation. Biochemical and Biophysical Research Communications, 347(2), 406–412.CrossRefGoogle Scholar
  13. Gang, C., Li, J., Chen, Y., Wang, Y., Li, H., Pan, B., & Odeh, I. (2015). Synergistic effect of chemical treatments on storage quality and chilling injury of honey peaches. Journal of Food Processing and Preservation, 39(6), 1108–1117.CrossRefGoogle Scholar
  14. Jang, H. J., Pih, K. T., Kang, S. G., Lim, J. H., Jin, J. B., Hai, L. P., et al. (1998). Molecular cloning of a novel Ca2+-binding protein that is induced by NaCl stress. Plant Molecular Biology, 37(5), 839–847.CrossRefGoogle Scholar
  15. Jiang, Y., Bao, H., Ge, Y., Tang, W., Cheng, D., Luo, K., Gong, G., & Gong, R. (2015). Therapeutic targeting of GSK3β enhances the Nrf2 antioxidantresponse and confers hepatic cytoprotection in hepatitis C. Gut, 64(1), 168–179.CrossRefGoogle Scholar
  16. Jiao, C., Zhu, L., & Gu, Z. (2017). GSK-3 mediates NO-cGMP-induced isoflavone production in soybean sprouts. Food Research International, 101, 203–208.CrossRefGoogle Scholar
  17. Kim, H. J., Yun, J., Lee, J., Hong, H., Jeong, J., Kim, E., Bae, Y. S., & Lee, K. J. (2011). SUMO1 attenuates stress-induced ROS generation by inhibiting NADPH oxidase 2. Biochemical and Biophysical Research Communications, 410(3), 555–562.CrossRefGoogle Scholar
  18. Kudla, J., Xu, Q., Harter, K., Gruissem, W., & Luan, S. (1999). Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4718–4723.CrossRefGoogle Scholar
  19. Lurie, S., & Crisosto, C. H. (2005). Chilling injury in peach and nectarine. Postharvest Biology and Technology, 37(3), 195–208.CrossRefGoogle Scholar
  20. Nelis, S., Conti, L., Zhang, C., & Sadanandom, A. (2015). A functional small ubiquitin-like modifier (SUMO) interacting motif (SIM) in the gibberellin hormone receptor GID1 is conserved in cereal crops and disrupting this motif does not abolish hormone dependency of the DELLA-GID1 interaction. Plant Signaling & Behavior, 10(2), e987528.CrossRefGoogle Scholar
  21. Pegoraro, C., Tadiello, A., Girardi, C. L., Chaves, F. C., Quecini, V., Costa de Oliveira, A., Trainotti, L., & Rombaldi, C. V. (2015). Transcriptional regulatory networks controlling woolliness in peach in response to preharvest gibberellin application and cold storage. BMC Plant Biology, 15(1), 279.CrossRefGoogle Scholar
  22. Ruan, J., Li, M., Jin, H., Sun, L., Zhu, Y., Xu, M., & Dong, J. (2015). UV-B irradiation alleviates the deterioration of cold-stored mangoes by enhancing endogenous nitric oxide levels. Food Chemistry, 169, 417–423.CrossRefGoogle Scholar
  23. Santa-Cruz, D. M., Pacienza, N. A., Zilli, C. G., Tomaro, M. L., Balestrasse, K. B., & Yannarelli, G. G. (2014). Nitric oxide induces specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation. Journal of Photochemistry and Photobiology B: Biology, 141, 202–209.CrossRefGoogle Scholar
  24. Shi, J., Kim, K. N., Ritz, O., Albrecht, V., Gupta, R., Harter, K., Luan, S., & Kudla, J. (1999). Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. The Plant Cell, 11(12), 2393–2405.Google Scholar
  25. Shi, P., Zeng, F., Song, W., Zhang, M., & Deng, R. (2002). Effects of calcium and lanthanum on ABA biosynthesis in cucumber leaves. Russian Journal of Plant Physiology, 49(5), 696–699.CrossRefGoogle Scholar
  26. Shi, Q., Fei, D., Wang, X., & Min, W. (2007). Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiology and Biochemistry, 45(45), 542–550.CrossRefGoogle Scholar
  27. Weksler, A., Dagar, A., Friedman, H., & Lurie, S. (2012). The effect of gibberellin on firmness and storage potential of peaches and nectarines. Acta Horticulturae, 962, 591–595.CrossRefGoogle Scholar
  28. Yang, R., Hui, Q., Gu, Z., Zhou, Y., Guo, L., Shen, C., & Zhang, W. (2016). Effects of CaCl2 on the metabolism of glucosinolates and the formation of isothiocyanates as well as the antioxidant capacity of broccoli sprouts. Journal of Functional Foods, 24, 156–163.CrossRefGoogle Scholar
  29. Yao, W., Xu, T., Farooq, S. U., Jin, P., & Zheng, Y. (2018). Glycine betaine treatment alleviates chilling injury in zucchini fruit (Cucurbita pepo L.) by modulating antioxidant enzymes and membrane fatty acid metabolism. Postharvest Biology and Technology, 144, 20–28.CrossRefGoogle Scholar
  30. Zheng, L., Krishnamoorthi, R., Zolkiewski, M., & Wang, X. (2000). Distinct Ca2+ binding properties of novel C2 domains of plant phospholipase dalpha and beta. Journal of Biological Chemistry, 275(26), 19700–19706.CrossRefGoogle Scholar
  31. Zhu, Z., Ding, Y., Zhao, J., Nie, Y., Zhang, Y., Sheng, J., et al. (2016). Effects of postharvest gibberellic acid treatment on chilling tolerance in cold-stored tomato (Solanum lycopersicum L.) Fruit. Food and Bioprocess Technology, 9(7), 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport ProcessMinistry of Agriculture and Rural AffairsBeijingPeople’s Republic of China

Personalised recommendations