Food and Bioprocess Technology

, Volume 12, Issue 10, pp 1646–1658 | Cite as

Refractance Window Drying of Apple Slices: Mass Transfer Phenomena and Quality Parameters

  • Deependra Rajoriya
  • Sandhya R Shewale
  • H. Umesh HebbarEmail author
Original Paper


The present study investigates the effect of Refractance Window (RW) drying at different temperatures (60 °C, 70 °C, 80 °C, and 90 °C) on drying characteristics and quality of apple slices and its comparison with hot air (HA) drying. Results showed that RW drying requires a shorter time (~ 25–37.5%) as compared to HA drying under similar conditions of drying. Also, RW drying at 90 °C resulted in higher retention of ascorbic acid (96%), without any significant change in color (ΔE = 5.5), compared to freeze drying. The microstructure analysis showed porous structure in RW-dried slices as compared to HA-dried ones. The influence of drying conditions on moisture diffusion was estimated using Fick’s, anomalous diffusion, and Dincer and Dost models. The values of moisture diffusivity (from 2.75 × 10−9 to 1.14 × 10−8 m2 s−1) obtained with the Dincer and Dost model were higher for RW as compared to HA and also were higher with respect to other models employed. Anomalous diffusion and Dincer and Dost models showed excellent agreement (R2 > 0.989) between experimental and predicted moisture ratios. This study showed that RW drying could effectively be used to dry thin layers of heat-sensitive fruits such as apple in a shorter time with better product quality as compared to HA drying.


Refractance Window drying Dincer and Dost model Anomalous diffusion model Apple Microstructure Ascorbic acid 



The authors wish to thank the Director of CSIR-CFTRI for providing the infrastructure and other facilities for carrying out this work. The first author would like to thank UGC-RGNF for the award of Junior Research Fellowship.

Funding Information

This study received financial support from CSIR-CFTRI.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Abonyi, B. I., Feng, H., Tang, C. G., Edwards, B. P., Mattinson, D. S., & Fellman, J. K. (2002). Quality retention in strawberry and carrot purees dried with Refractance Window system. Journal of Food Science, 67(3), 1051–1056.CrossRefGoogle Scholar
  2. Abul-Fadl, M. M., & Ghanem, T. H. (2011). Effect of Refractance Window (RW) drying method on quality criteria of produced tomato powder as compared to the convection drying method. World Applied Sciences Journal, 15(7), 953–965.Google Scholar
  3. AOAC. (2005). Official methods of analysis of AOAC international. Maryland: Gaithersburg.Google Scholar
  4. Atungulu, G., Nishiyama, Y., & Koide, S. (2004). Electrode configuration and polarity effects on physicochemical properties of electric field treated apples post harvest. Biosystems Engineering, 87(3), 313–323.CrossRefGoogle Scholar
  5. Baeghbali, V., Niakousari, M., Ngadi, M. O., & Hadi Eskandari, M. (2018). Combined ultrasound and infrared assisted conductive hydro-drying of apple slices. Drying Technology, 36, 1–13.
  6. Beigi, M. (2016). Influence of drying air parameters on mass transfer characteristics of apple slices. Heat and Mass, 52(10), 2213–2221.CrossRefGoogle Scholar
  7. Berkowitz, B., Klafter, J., Metzler, R., & Scher, H. (2002). Physical pictures of transport in heterogeneous media: advection-dispersion, random-walk, and fractional derivative formulations. Water Resources Research, 38(10), 9–1.CrossRefGoogle Scholar
  8. Bezerra, C. V., da Silva, L. H. M., Corrêa, D. F., & Rodrigues, A. M. (2015). A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. International Journal of Heat and Mass Transfer, 85, 750–755.CrossRefGoogle Scholar
  9. Chong, C. H., Figiel, A., Law, C. L., & Wojdyło, A. (2014). Combined drying of apple cubes by using of heat pump, vacuum-microwave, and intermittent techniques. Food and Bioprocess Technology, 7(4), 975–989.CrossRefGoogle Scholar
  10. Crank, J. (1975). The mathematics of diffusion (2nd ed.). London: Oxford University Press.Google Scholar
  11. Dincer, I., & Dost, S. (1995). An analytical model for moisture diffusion in solid objects during drying. Drying Technology, 13(1–2), 425–435.CrossRefGoogle Scholar
  12. Dincer, I., & Dost, S. (1996). A modelling study for moisture diffusivities and moisture transfer coefficients in drying of solid objects. International Journal of Energy Research, 20(6), 531–539.CrossRefGoogle Scholar
  13. FAOSTAT. Food and Agriculture Organization of the United States (2017). Access date: January 28, 2019
  14. Fernandes, F. A., Rodrigues, S., Cárcel, J. A., & García-Pérez, J. V. (2015). Ultrasound-assisted air-drying of apple (Malus domestica L.) and its effects on the vitamin of the dried product. Food and Bioprocess Technology, 8(7), 1503–1511.CrossRefGoogle Scholar
  15. Franco, S., Jaques, A., Pinto, M., Fardella, M., Valencia, P., Núñez, H., Ramίrez, C., & Simpson, R. (2019). Dehydration of salmon (Atlantic salmon), beef, and apple (Granny Smith) using Refractance Window™: effect on diffusion behavior, texture, and color changes. Innovative Food Science & Emerging Technologies, 52, 8–16.CrossRefGoogle Scholar
  16. Goyal, R. K., Kingsly, A. R. P., Manikantan, M. R., & Ilyas, S. M. (2006). Thin-layer drying kinetics of raw mango slices. Biosystems Engineering, 95(1), 43–49.CrossRefGoogle Scholar
  17. Gregory, J. F. (1996). Vitamins. In O. R. Fennema (Ed.), Food chemistry (3rd ed., pp. 531–616). New York: Marcel Dekker.Google Scholar
  18. Hernández-Santos, B., Martínez-Sánchez, C. E., Torruco-Uco, J. G., Rodríguez-Miranda, J., Ruiz-López, I. I., Vajando-Anaya, E. S., Carmona-García, R., & Herman-Lara, E. (2016). Evaluation of physical and chemical properties of carrots dried by Refractance Window drying. Drying Technology, 34(12), 1414–1422.CrossRefGoogle Scholar
  19. Jafari, S. M., Azizi, D., Mirzaei, H., & Dehnad, D. (2016). Comparing quality characteristics of oven-dried and Refractance Window-dried kiwifruits. Journal of Food Processing and Preservation, 40(3), 362–372.CrossRefGoogle Scholar
  20. Jagota, S. K., & Dani, H. M. (1982). A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Analytical Biochemistry, 127(1), 178–182.CrossRefGoogle Scholar
  21. Jain, D., & Pathare, P. B. (2004). Selection and evaluation of thin layer drying models for infrared radiative and convective drying of onion slices. Biosystems Engineering, 89(3), 289–296.CrossRefGoogle Scholar
  22. Ju, H. Y., El-Mashad, H. M., Fang, X. M., Pan, Z., Xiao, H. W., Liu, Y. H., & Gao, Z. J. (2016). Drying characteristics and modeling of yam slices under different relative humidity conditions. Drying Technology, 34(3), 296–306.CrossRefGoogle Scholar
  23. Magoon, R. E. (1986). Method and apparatus for drying fruit pulp and the like. U.S. Patent 4,631,837, December 30.Google Scholar
  24. McMinn, W. A. M. (2004). Prediction of moisture transfer parameters for microwave drying of lactose powder using Bi–G drying correlation. Food Research International, 37(10), 1041–1047.CrossRefGoogle Scholar
  25. Mohapatra, D., Mishra, S., Singh, C. B., & Jayas, D. S. (2011). Post-harvest processing of banana: opportunities and challenges. Food and Bioprocess Technology, 4(3), 327–339.CrossRefGoogle Scholar
  26. Moses, J. A., Norton, T., Alagusundaram, K., & Tiwari, B. K. (2014). Novel drying techniques for the food industry. Food Engineering Reviews, 6(3), 43–55.CrossRefGoogle Scholar
  27. Mrkić, V., Ukrainczyk, M., & Tripalo, B. (2007). Applicability of moisture transfer Bi–Di correlation for convective drying of broccoli. Journal of Food Engineering, 79(2), 640–646.CrossRefGoogle Scholar
  28. Mujumdar, A. S., & Law, C. L. (2010). Drying technology: trends and applications in postharvest processing. Food and Bioprocess Technology, 3(6), 843–852.CrossRefGoogle Scholar
  29. Nindo, C. I., & Tang, J. (2007). Refractance Window dehydration technology: a novel contact drying method. Drying Technology, 25(1), 37–48.CrossRefGoogle Scholar
  30. Ochoa-Martínez, C. I., Quintero, P. T., Ayala, A. A., & Ortiz, M. J. (2012). Drying characteristics of mango slices using the Refractance Window™ technique. Journal of Food Engineering, 109(1), 69–75.CrossRefGoogle Scholar
  31. Ortiz-Jerez, M. J., Gulati, T., Datta, A. K., & Ochoa-Martínez, C. I. (2015). Quantitative understanding of Refractance Window™ drying. Food and Bioproducts Processing, 95, 237–253.CrossRefGoogle Scholar
  32. Raghavi, L. M., Moses, J. A., & Anandharamakrishnan, C. (2018). Refractance Window drying of foods: a review. Journal of Food Engineering, 222, 267–275.CrossRefGoogle Scholar
  33. Ramírez, C., Astorga, V., Nuñez, H., Jaques, A., & Simpson, R. (2017). Anomalous diffusion based on fractional calculus approach applied to drying analysis of apple slices: the effects of relative humidity and temperature. Journal of Food Process Engineering, 40(5), e12549.CrossRefGoogle Scholar
  34. Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. Journal of Food Engineering, 49(4), 311–319.CrossRefGoogle Scholar
  35. Rojas, A. M., & Gerschenson, L. N. (2001). Ascorbic acid destruction in aqueous model systems: an additional discussion. Journal of the Science of Food and Agriculture, 81(15), 1433–1439.CrossRefGoogle Scholar
  36. Shewale, S. R., & Hebbar, H. U. (2017). Effect of infrared pretreatment on low-humidity air drying of apple slices. Drying Technology, 35(4), 490–499.CrossRefGoogle Scholar
  37. Shewale, S. R., Rajoriya, D., & Hebbar, H. U. (2019). Low humidity air drying of apple slices: effect of EMR pretreatment on mass transfer parameters, energy efficiency and quality. Innovative Food Science & Emerging Technologies, 55, 1–10.CrossRefGoogle Scholar
  38. Simpson, R., Jaques, A., Nuñez, H., Ramirez, C., & Almonacid, A. (2013). Fractional calculus as a mathematical tool to improve the modeling of mass transfer phenomena in food processing. Food Engineering Reviews, 5(1), 45–55.CrossRefGoogle Scholar
  39. Simpson, R., Ramírez, C., Birchmeier, V., Almonacid, A., Moreno, J., Nuñez, H., & Jaques, A. (2015). Diffusion mechanisms during the osmotic dehydration of granny smith apples subjected to a moderate electric field. Journal of Food Engineering, 166, 204–211.CrossRefGoogle Scholar
  40. Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., Lemus-Mondaca, R., & Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, color, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132(1), 51–59.CrossRefGoogle Scholar
  41. Vishwanathan, K. H., Giwari, G. K., & Hebbar, H. U. (2013). Infrared assisted dry-blanching and hybrid drying of carrot. Food and Bioproducts Processing, 91(2), 89–94.CrossRefGoogle Scholar
  42. Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., & Oszmiański, J. (2014). Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology, 7(3), 829–841.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Deependra Rajoriya
    • 1
    • 2
  • Sandhya R Shewale
    • 1
    • 2
  • H. Umesh Hebbar
    • 1
    • 2
    Email author
  1. 1.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia
  2. 2.Department of Technology Scale-upCSIR-Central Food Technological Research Institute (CSIR-CFTRI)MysoreIndia

Personalised recommendations