Food and Bioprocess Technology

, Volume 12, Issue 10, pp 1756–1765 | Cite as

Novel Role of Ethanol in Delaying Postharvest Physiological Deterioration and Keeping Quality in Cassava

  • Guoyin Liu
  • Bing Li
  • Yuqi Wang
  • Bo Wei
  • Chaozu He
  • Debing LiuEmail author
  • Haitao ShiEmail author
Original Paper


Massive economic losses and the decrease in quality of cassava are caused by postharvest physiological deterioration (PPD). However, an effective solution remains limited. In this study, the role of ethanol in the PPD of cassava was investigated and highlighted. Exogenous ethanol delayed PPD and reduced the accumulation of reactive oxygen species, while increased the underlying activities of superoxide dismutase, catalase, peroxidase, and 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging. Moreover, exogenous ethanol increased the endogenous levels of ethylene and melatonin, all of which are negative regulators of PPD. Notably, this study found that exogenous ethanol reduced the degradation of starch, but enhanced ascorbic acid content and carotenoid content. In summary, these results revealed the novel role of ethanol in delaying PPD and improving the quality of cassava tubes without ethanol residue, suggesting an effective and promising way in cassava.


Cassava Ethanol Ethylene Postharvest physiological deterioration Quality 


Funding Information

This research was supported by the Scientific Research Project of Higher Education in Hainan Education Department (No. Hnky2018-7) to Guoyin Liu, the startup funding, and the scientific research foundation of the Hainan University (No. kyqd1531) to Haitao Shi, and the crop science postgraduate innovation project of Hainan university tropical agriculture and forestry college (No.ZWCX2018017) to Bing Li.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Acedo, J., & Acedo, A. (2013). Controlling postharvest physiological deterioration and surface browning in cassava (Manihot esculenta Crantz) roots with hot water treatment. Acta Horticulturae, 989, 357–362.CrossRefGoogle Scholar
  2. Aghdam, M. S., & Fard, J. R. (2017). Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria × anannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry, 221, 1650–1657.CrossRefGoogle Scholar
  3. Arnao, M. B., & Hernández-Ruiz, J. (2015). Functions of melatonin in plants: a review. Journal of Pineal Research, 59(2), 133–150.CrossRefGoogle Scholar
  4. Asoda, T., Terai, H., Kato, M., & Suzuki, Y. (2009). Effects of postharvest ethanol vapor treatment on ethylene responsiveness in broccoli. Postharvest Biology and Technology, 52(2), 216–220.CrossRefGoogle Scholar
  5. Ayoola, O. T., & Agboola, A. A. (2004). Influence of cassava planting patterns and pruning methods on crop yield in a cassava-based cropping system. African Crop Science Journal, 12(2), 115–122.CrossRefGoogle Scholar
  6. Byeon, Y., & Back, K. (2014). Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. Journal of Pineal Research, 56(2), 189–195.CrossRefGoogle Scholar
  7. Cao, S., Song, C., Shao, J., Bian, K., Chen, W., & Yang, Z. (2016). Exogenous melatonin treatment increases chilling tolerance and induces defence response in harvested peach fruit during cold storage. Journal of Agricultural and Food Chemistry, 64(25), 5215–5222.CrossRefGoogle Scholar
  8. Chavez, A. L., Bedoya, J. M., Sánchez, T., Iglesias, C. A., & Roca, W. (2000). Iron, carotene, and ascorbic acid in cassava roots and leaves. Food and Nutrition Bulletin, 21(4), 410–413.CrossRefGoogle Scholar
  9. Ding, Y., Zhu, Z., Zhao, J., Nie, Y., Zhang, Y., Sheng, J., Meng, D., Mao, H., & Tang, X. (2016). Effects of postharvest brassinolide treatment on the metabolism of white button mushroom (Agaricus bisporus) in relation to development of browning during storage. Food and Bioprocess Technology, 9(8), 1327–1334.CrossRefGoogle Scholar
  10. Duan, J. J., Li, J., Guo, S., & Kang, Y. (2008). Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity. Journal of Plant Physiology, 165(15), 1620–1635.CrossRefGoogle Scholar
  11. Gao, J. F. (2007). Experimental guidance plant physiology (pp. 145–225). Beijing: Higher Education Press.Google Scholar
  12. Gao, H., Zhang, Z. K., Chai, H. K., Cheng, N., Yang, Y., Wang, D. N., & Cao, W. (2016). Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology, 118, 103–110.CrossRefGoogle Scholar
  13. Gao, J., Luo, Y. G., Turner, E., & Zhu, Y. Q. (2017). Mild concentration of ethanol in combination with ascorbic acid inhibits browning and maintains quality of fresh-cut lotus root. Postharvest Biology and Technology, 128, 169–177.CrossRefGoogle Scholar
  14. Gu, B., Yao, Q. Q., Li, K. M., & Chen, S. B. (2013). Change in physicochemical traits of cassava roots and starches associated with genotypes and environmental factors. Starch/Stärke, 65(3-4), 253–263.CrossRefGoogle Scholar
  15. Hattori, A., Migitaka, H., Iigo, M., Itoh, M., Yamamoto, K., Ohtani-Kaneko, R., Hara, M., Suzuki, T., & Reiter, R. J. (1995). Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International, 35(3), 627–634.Google Scholar
  16. Herppich, W. B., Huyskens-Keil, S., & Hassenberg, K. (2014). Impact of ethanol treatment on physiological and microbiological properties of fresh white asparagus (Asparagus officinalis L.) spears. LWT-Food Science and Technology, 57(1), 156–164.CrossRefGoogle Scholar
  17. Herppich, W. B., Huyskens-Keil, S., & Hassenberg, K. (2015). Impact of ethanol treatment on the chemical properties of cell walls and their influence on toughness of white asparagus (Asparagus officinalis L.) spears. Food and Bioprocess Technology, 8(7), 1476–1484.CrossRefGoogle Scholar
  18. Hodges, D. M., Lester, G. E., Munro, K. D., & Toivonen, P. M. A. (2004). Oxidative stress: importance for postharvest quality. HortScience, 39(5), 924–929.CrossRefGoogle Scholar
  19. Homaida, M. A., Yan, S. L., & Yang, H. (2017). Effects of ethanol treatment on inhibiting fresh-cut sugarcane enzymatic browning and microbial growth. LWT- Food Science and Technology, 77, 8–14.CrossRefGoogle Scholar
  20. Hu, W., Kong, H., Guo, Y., Zhang, Y., Ding, Z., Tie, W., Yan, Y., Huang, Q., Peng, M., Shi, H., & Guo, A. (2016). Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava. Frontiers in Plant Science.
  21. Hu, W., Tie, W., Ou, W., Yan, Y., Kong, H., Zuo, J., Ding, X., Ding, Z., Liu, Y., Wu, C., Guo, Y., Shi, H., Li, K., & Guo, A. (2018). Crosstalk between calcium and melatonin affects postharvest physiological deterioration and quality loss in cassava. Postharvest Biology and Technology, 140, 42–49.CrossRefGoogle Scholar
  22. Isamah, G. K., Asagba, S. O., & Ekakitie, A. O. (2003). Lipid peroxidation, activities of superoxide dismutase and catalase during post-harvest deterioration of cassava (Manihot esculenta crantz) root tubers. International Biodeterioration & Biodegradation, 52(3), 129–133.CrossRefGoogle Scholar
  23. Khademi, O., Salvador, A., Zamani, Z., & Besada, C. (2013). Effects of hot water treatments on antioxidant enzymatic system in reducing flesh browning of persimmon. Food and Bioprocess Technology, 6(11), 3038–3046.CrossRefGoogle Scholar
  24. Lee, B., Seo, J. D., Rhee, J. K., & Kim, C. Y. (2016). Heated apple juice supplemented with onion has greatly improved nutritional quality and browning index. Food Chemistry, 201, 315–319.CrossRefGoogle Scholar
  25. Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., & Mori, W. (1958). Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society, 80(10), 2587.CrossRefGoogle Scholar
  26. Li, M. L., Li, X., Li, J., Ji, Y., Han, C., Jin, P., & Zheng, Y. (2018). Responses of fresh-cut strawberries to ethanol vapor pretreatment: improved quality maintenance and associated antioxidant metabolism in gene expression and enzyme activity levels. Journal of Agricultural and Food Chemistry, 66(31), 8382–8390.CrossRefGoogle Scholar
  27. Liu, W. W., Qi, H., Xu, B., Li, Y., Tian, X., Jiang, Y., Xu, X., & Lv, D. (2012). Ethanol treatment inhibits internal ethylene concentrations and enhances ethyl ester production during storage of oriental sweet melons (Cucumis melo var. makuwa Makino). Postharvest Biology and Technology, 67, 75–83.CrossRefGoogle Scholar
  28. Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47–55.CrossRefGoogle Scholar
  29. Ma, Q. X., Zhang, T., Zhang, P., & Wang, Z. Y. (2016). Melatonin attenuates postharvest physiological deterioration of cassava storage roots. Journal of Pineal Research, 60(4), 424–434.CrossRefGoogle Scholar
  30. Miyagawa, Y., Tamoi, M., & Shigeoka, S. (2000). Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant and Cell Physiology, 41(3), 311–320.CrossRefGoogle Scholar
  31. Morante, N., Sánchez, T., Ceballos, H., Calle, F., Pérez, J. C., Egesi, C., Cuambe, C. E., Escobar, A. F., Ortiz, D., Chávez, A. L., & Fregene, M. (2010). Tolerance to postharvest physiological deterioration in cassava roots. Crop Science, 50(4), 1333–1338.CrossRefGoogle Scholar
  32. Moriwaki, T., Yamamoto, Y., Aida, T., Funahashi, T., Shishido, T., Asada, M., Prodhan, S., Komamine, A., & Motohashi, T. (2008). Overexpression of the escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5. Plant Biotechnology Reports, 2(1), 41–46.CrossRefGoogle Scholar
  33. Oirschot, Q. E., O’Brien, G. M., Dufour, D., EI-Sharkawy, M., & Mesa, E. (2000). The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. Journal of the Science of Food and Agriculture, 80(13), 1866–1873.CrossRefGoogle Scholar
  34. Peng, X., Li, R., Zou, R., Chen, J., Zhang, Q., Cui, P., Chen, F., Fu, Y., Yang, J., & Xia, X. (2014). Allicin inhibits microbial growth and oxidative browning of fresh-cut lettuce (lactuca sativa) during refrigerated storage. Food and Bioprocess Technology, 7(6), 1597–1605.CrossRefGoogle Scholar
  35. Rabino, I., & Mancinelli, A. L. (1986). Light, temperature, and anthocyanin production. Plant Physiology, 81(3), 922–924.CrossRefGoogle Scholar
  36. Reilly, K., Han, Y., Tohme, J., & Beeching, J. R. (2001). Isolation and characterization of a cassava catalase expressed during post-harvest physiological deterioration. Biochimica et Biophysica Acta, 1518(3), 317–323.CrossRefGoogle Scholar
  37. Reilly, K., Gómez-vásquez, R., Buschmann, H., Tohme, J., & Beeching, J. R. (2004). Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Molecular Biology, 56(4), 625–641.CrossRefGoogle Scholar
  38. Rider, J. E., Hacker, A., Mackintosh, C. A., Pegg, A. E., Woster, P. M., & Casero, J. (2007). Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids, 33(2), 231–240.CrossRefGoogle Scholar
  39. Salcedo, A., & Siritunga, D. (2011). Insights into the physiological, biochemical and molecular basis of postharvest deterioration in cassava (Manihot esculenta) roots. American Journal of Experimental Agriculture, 1(4), 414–431.CrossRefGoogle Scholar
  40. Sánchez, T., Chávez, A. L., Ceballos, H., Rodriguez-Amaya, D. B., Nestel, P., & Ishitani, M. (2006). Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. Journal of the Science of Food and Agriculture, 86(4), 634–639.CrossRefGoogle Scholar
  41. Saravanan, R., Ravi, V., Stephen, R., Thajudhin, S., & George, J. (2016). Post-harvest physiological deterioration of cassava (Manihot esculenta) − a review. Indian Journal Agriculture Science, 86(11), 1383–1390.Google Scholar
  42. Shi, H., & Chan, Z. (2014). The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. Journal of Pineal Research, 57(2), 185–191.CrossRefGoogle Scholar
  43. Shi, H., Ye, T., Chen, F., Cheng, Z., Wang, Y., Yang, P., Zhang, Y., & Chan, Z. (2013). Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. Journal of Experimental Botany, 64(5), 1367–1379.CrossRefGoogle Scholar
  44. Tan, D. X., Chen, L. D., Poeggeler, B., Manchester, L. C., & Reiter, R. J. (1993). Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocrine Journal, 1, 57–60.Google Scholar
  45. Tumuhimbise, R., Melis, R., & Shanahan, P. (2015). Genetic variation in cassava for postharvest physiological deterioration. Archives of Agronomy and Soil Science, 61(9), 1333–1342.CrossRefGoogle Scholar
  46. Uarrota, V. G., & Maraschin, M. (2015). Metabolomic, enzymatic, and histochemical analyzes of cassava roots during postharvest physiological deterioration. BMC Research Notes, 8(1), 648.CrossRefGoogle Scholar
  47. Uarrota, V. G., Costa Nunes, E., Peruch, L. A. M., Oliveira Neubert, E., Coelho, B., Moresco, R., Domínguez, M., Sánchez, T., Meléndez, J., Dufour, D., Ceballos, H., Lopez-Lavalle, L., Hershey, C., Rocha, M., & Maraschin, M. (2016). Toward better understanding of postharvest deterioration: biochemical changes in stored cassava (Manihot esculenta Crantz) roots. Food Science Nutrition, 4(3), 409–422.CrossRefGoogle Scholar
  48. Uchechukwu-Agua, A. D., Caleb, O. J., & Opara, U. L. (2015). Postharvest handling and storage of fresh cassava root and products: a review. Food and Bioprocess Technology, 8(4), 729–748.CrossRefGoogle Scholar
  49. Vanderschuren, H., Nyaboga, E., Poon, J. S., Baerenfaller, K., Grossmann, J., Hirsch-Hoffmann, M., Kirchgessner, N., Nanni, P., & Gruissem, W. (2014). Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest deterioration. Plant Cell, 26(5), 1913–1924.CrossRefGoogle Scholar
  50. Wang, Q. G., Nie, X. L., & Cantwell, M. (2014). Hot water and ethanol treatments can effectively inhibit the discoloration of fresh-cut sunchoke (Helianthus tuberosus L.) tubers. Postharvest Biology and Technology, 94, 49–57.CrossRefGoogle Scholar
  51. Wei, Y., Hu, W., Wang, Q., Liu, W., Wu, C., Zeng, H., Yan, Y., Li, X., He, C., & Shi, H. (2016). Comprehensive transcriptional and functional analyses of melatonin synthesis genes in cassava reveal their novel role in hypersensitive-like cell death. Scientific Reports, 6, 35029.CrossRefGoogle Scholar
  52. Wei, Y., Chang, Y., Zeng, H., Liu, G., He, C., & Shi, H. (2018). RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. Journal of Pineal Research, 64(1), e12454.CrossRefGoogle Scholar
  53. Xu, J., Duan, X. G., Yang, J., Beeching, J. R., & Zhang, P. (2013). Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiology, 161(3), 1517–1528.CrossRefGoogle Scholar
  54. Yan, S. L., Yang, T. B., & Luo, Y. G. (2015). The mechanism of ethanol treatment on inhibiting lettuce enzymatic browning and microbial growth. LWT-Food Science and Technology, 63(1), 383–390.CrossRefGoogle Scholar
  55. Yan, S. L., Luo, Y. G., Zhou, B., & Ingram, D. T. (2017). Dual effectiveness of ascorbic acid and ethanol combined treatment to inhibit browning and inactivate pathogens on fresh-cut apples. LWT-Food Science and Technology, 80, 311–320.CrossRefGoogle Scholar
  56. Zhang, H., Liu, X., Chen, T., Ji, Y., Shi, K., Wang, L., Zheng, X., & Kong, J. (2018). Melatonin in apples and juice: inhibition of browning and microorganism growth in apple juice. Molecules, 23(3), e521.CrossRefGoogle Scholar
  57. Zidenga, T., Leyva-Guerrero, E., Moon, H., Siritunga, D., & Sayre, R. (2012). Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiology, 159(4), 1396–1407.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical CropsHainan UniversityHaikouChina
  2. 2.College of ForestryHainan UniversityHaikouChina
  3. 3.College of Applied Science and TechnologyHainan UniversityDanzhouChina

Personalised recommendations