Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 10, pp 1672–1682 | Cite as

Preparation and Characterization of Succinylated Nanoparticles from High-Amylose Starch via the Extrusion Process Followed by Ultrasonic Energy

  • Alberto A. Escobar-Puentes
  • Susana Rincón
  • Adriana García-Gurrola
  • Alejandro Zepeda
  • Fernando Martínez-BustosEmail author
Original Paper
  • 101 Downloads

Abstract

The aim of the present study was to obtain succinylated nanoparticles from high-amylose starch using a sequential method of extrusion and ultrasonic energy. Dynamic light scattering, degree of substitution, Fourier transform infrared spectroscopy, X-ray diffraction, and field emission scanning electron microscopy were employed to characterize the nanoparticles. The extrusion processing caused granular fragmentation and the succinylation of starch. Afterward, succinylated nanoparticles from the extruded starch were obtained with high yields using ultrasonication. Also, non-esterified nanoparticles were obtained to evaluate the succinylation effect. Succinylation increased hydrodynamic size (up to 329 nm) and ζ-potential values (up to − 62 mV) and improved the colloidal stability of succinylated nanoparticles compared to those of the non-esterified nanoparticles. Succinylated nanoparticles showed polyhedral morphologies, while non-esterified nanoparticles showed round-spherical and cubic morphologies. Moreover, all nanoparticulate systems showed a V61-type crystalline structure and an increased crystallinity. Using the sequential method of extrusion and ultrasonic energy made it possible to obtain succinylated nanoparticles from HAMS with size-controlled and desirable colloidal properties.

Keywords

High-amylose starch Extrusion High-intensity ultrasonication Starch nanoparticles Succinylation 

Notes

Acknowledgments

Alberto Escobar-Puentes would like to thank CONACYT for the PhD scholarship. The authors thank to Verónica Flores-Casamayor, Luz Ma Avilés Arellano, Eleazar Urbina, and José Juan Véles-Medina from Cinvestav-Querétaro for their technical support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Amaya-Llano, S. L., Martínez-Bustos, F., Alegría, A. L. M., & de Jesús Zazueta-Morales, J. (2011). Comparative studies on some physico-chemical, thermal, morphological, and pasting properties of acid-thinned jicama and maize starches. Food and Bioprocess Technology, 4(1), 48–60.  https://doi.org/10.1007/s11947-008-0153-z.CrossRefGoogle Scholar
  2. Amirsoleimani, M., Khalilzadeh, M. A., Sadeghifar, F., & Sadeghifar, H. (2018). Surface modification of nanosatrch using nano silver: a potential antibacterial for food package coating. Journal of Food Science and Technology, 55(3), 899–904.  https://doi.org/10.1007/s13197-017-2996-7.CrossRefGoogle Scholar
  3. Athira, G. K., Jyothi, A. N., & Vishnu, V. R. (2018). Water soluble octenyl succinylated cassava starch-curcumin nanoformulation with enhanced bioavailability and anticancer potential. Starch-Starke, 1700178(7-8), 1–9.  https://doi.org/10.1002/star.201700178.Google Scholar
  4. Bel Haaj, S., Magnin, A., Pétrier, C., & Boufi, S. (2013). Starch nanoparticles formation via high power ultrasonication. Carbohydrate Polymers, 92(2), 1625–1632.  https://doi.org/10.1016/j.carbpol.2012.11.022.CrossRefGoogle Scholar
  5. Boufi, S., Bel Haaj, S., Magnin, A., Pignon, F., Impéror-Clerc, M., & Mortha, G. (2018). Ultrasonic assisted production of starch nanoparticles: structural characterization and mechanism of disintegration. Ultrasonics Sonochemistry, 41, 327–336.  https://doi.org/10.1016/j.ultsonch.2017.09.033.CrossRefGoogle Scholar
  6. Chang, Y., Yan, X., Wang, Q., Ren, L., Tong, J., & Zhou, J. (2017). Influence of ultrasonic treatment on formation of amylose nanoparticles prepared by nanoprecipitation. Carbohydrate Polymers, 157, 1413–1418.  https://doi.org/10.1016/j.carbpol.2016.11.019.CrossRefGoogle Scholar
  7. Chen, H., Huang, Q., Fu, X., & Luo, F. (2014). Ultrasonic effect on the octenyl succinate starch synthesis and substitution patterns in starch granules. Food Hydrocolloids, 35, 636–643.  https://doi.org/10.1016/j.foodhyd.2013.08.009.CrossRefGoogle Scholar
  8. Chen, X., Du, X., Chen, P., Guo, L., Xu, Y., & Zhou, X. (2017). Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment. Carbohydrate Polymers, 157, 637–642.  https://doi.org/10.1016/j.carbpol.2016.10.024.CrossRefGoogle Scholar
  9. Gao, X., Isayev, A. I., Zhang, X., & Zhong, J. (2017). Influence of processing parameters during ultrasound assisted extrusion on the properties of polycarbonate/carbon nanotubes composites. Composites Science and Technology, 144, 125–138.  https://doi.org/10.1016/j.compscitech.2017.03.019.CrossRefGoogle Scholar
  10. García-Gurrola, A., Rincón, S., Escobar-Puentes, A. A., Zepeda, A., Pérez-Robles, J. F., & Martínez-Bustos, F. (2019). Synthesis and succinylation of starch nanoparticles by means of a single step using sonochemical energy. Ultrasonics Sonochemistry, 56, 458–465.  https://doi.org/10.1016/j.ultsonch.2019.04.035.CrossRefGoogle Scholar
  11. Giezen, F. E., Jules, R., Jongboom, O., Feli, H., Gotileb, K. F., & Boersma, A. (2004). Biopolymer nanoparticles. US 6,677,386 B1.Google Scholar
  12. Guimarães, J. T., Silva, E. K., Alvarenga, V. O., Costa, A. L. R., Cunha, R. L., Sant’Ana, A. S., et al. (2018). Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics Sonochemistry, 44, 251–260.  https://doi.org/10.1016/j.ultsonch.2018.02.012.CrossRefGoogle Scholar
  13. Jeon, Y., Lowell, A. V., & Gross, R. a. (1999). Studies of starch esterification: Reactions with alkenylsuccinates in aqueous slurry systems. Starch-Starke, 51(2–3), 90–93.  https://doi.org/10.1002/(SICI)1521-379X(199903)51:2<90::AID-STAR90>3.0.CO;2-M.CrossRefGoogle Scholar
  14. Kang, N., Zuo, Y. J., Hilliou, L., Ashokkumar, M., & Hemar, Y. (2016). Viscosity and hydrodynamic radius relationship of high-power ultrasound depolymerised starch pastes with different amylose content. Food Hydrocolloids, 52, 183–191.  https://doi.org/10.1016/j.foodhyd.2015.06.017.CrossRefGoogle Scholar
  15. Kim, H., Han, J., Kweon, D., Park, J., & Lim, S. (2013). Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch. Carbohydrate Polymers, 93(2), 582–588.  https://doi.org/10.1016/j.carbpol.2012.12.050.CrossRefGoogle Scholar
  16. Kim, H., Park, S. S., & Lim, S. (2015). Preparation , characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces, 126, 607–620.  https://doi.org/10.1016/j.colsurfb.2014.11.011.CrossRefGoogle Scholar
  17. LeCorre, D., Bras, J., & Dufresne, A. (2011). Influence of botanic origin and amylose content on the morphology of starch nanocrystals. Journal of Nanoparticle Research, 13(12), 7193–7208.  https://doi.org/10.1007/s11051-011-0634-2.CrossRefGoogle Scholar
  18. Lei, D., Liu, J., Ye, F., Chen, F., & Zhao, G. (2014). Synthesis, characterization and aqueous self-assembly of octenylsuccinic corn dextrin ester with high molecular weight. Food Hydrocolloids, 41, 250–256.  https://doi.org/10.1016/j.foodhyd.2014.04.006.CrossRefGoogle Scholar
  19. Lima, F. F., & Andrade, C. T. (2010). Effect of melt-processing and ultrasonic treatment on physical properties of high-amylose maize starch. Ultrasonics Sonochemistry, 17(4), 637–641.  https://doi.org/10.1016/j.ultsonch.2010.01.001.CrossRefGoogle Scholar
  20. Liu, D., Wu, Q., Chen, H., Chang, P.R., (2009). Transitional properties of starch colloid with particle size reduction from micro- to nanometer. Journal of Colloid and Interface Science 339(1), 117–124.CrossRefGoogle Scholar
  21. Liu, Q., Li, F., Lu, H., Li, M., Liu, J., Zhang, S., Sun, Q., & Xiong, L. (2018). Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chemistry, 242, 256–263.  https://doi.org/10.1016/j.foodchem.2017.09.071.CrossRefGoogle Scholar
  22. Lopez-Rubio, A., Htoon, A., & Gilbert, E. P. (2007). Influence of extrusion and digestion on the nanostructure of high-amylose maize starch. Biomacromolecules, 8(5), 1564–1572.  https://doi.org/10.1021/bm061124s.CrossRefGoogle Scholar
  23. Lu, K., Miao, M., Ye, F., Cui, S. W., Li, X., & Jiang, B. (2016). Impact of dual-enzyme treatment on the octenylsuccinic anhydride esterification of soluble starch nanoparticle. Carbohydrate Polymers, 147, 392–400.  https://doi.org/10.1016/j.carbpol.2016.04.012.CrossRefGoogle Scholar
  24. Luo, Z., Fu, X., He, X., Luo, F., Gao, Q., & Yu, S. (2008). Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content. Starch-Starke, 60(11), 646–653.  https://doi.org/10.1002/star.200800014.CrossRefGoogle Scholar
  25. Miao, M., Li, R., Jiang, B., Cui, S. W., Zhang, T., & Jin, Z. (2014). Structure and physicochemical properties of octenyl succinic esters of sugary maize soluble starch and waxy maize starch. Food Chemistry, 151, 154–160.  https://doi.org/10.1016/j.foodchem.2013.11.043.CrossRefGoogle Scholar
  26. Perez Herrera, M., Vasanthan, T., & Hoover, R. (2016). Characterization of maize starch nanoparticles prepared by acid hydrolysis. Cereal Chemistry, 93(3), 323–330.  https://doi.org/10.1094/CCHEM-08-15-0175-R.CrossRefGoogle Scholar
  27. Qiu, C., Chang, R., Yang, J., Ge, S., Xiong, L., Zhao, M., Li, M., & Sun, Q. (2017). Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains. Food Chemistry, 221, 1426–1433.  https://doi.org/10.1016/j.foodchem.2016.11.009.CrossRefGoogle Scholar
  28. Ren, L., Wang, Q., Yan, X., Tong, J., Zhou, J., & Su, X. (2016). Dual modification of starch nanocrystals via crosslinking and esterification for enhancing their hydrophobicity. Food Research International, 87, 180–188.  https://doi.org/10.1016/j.foodres.2016.07.007.CrossRefGoogle Scholar
  29. Sadeghi, R., Daniella, Z., Uzun, S., & Kokini, J. (2017). Effects of starch composition and type of non-solvent on the formation of starch nanoparticles and improvement of curcumin stability in aqueous media. Journal of Cereal Science, 76, 122–130.  https://doi.org/10.1016/j.jcs.2017.05.020.CrossRefGoogle Scholar
  30. Seo, T. R., Kim, H. Y., & Lim, S. T. (2016). Preparation and characterization of aqueous dispersions of high amylose starch and conjugated linoleic acid complex. Food Chemistry, 211, 530–537.  https://doi.org/10.1016/j.foodchem.2016.05.078.CrossRefGoogle Scholar
  31. Song, D., Thio, Y. S., & Deng, Y. (2011). Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydrate Polymers, 85(1), 208–214.  https://doi.org/10.1016/j.carbpol.2011.02.016.CrossRefGoogle Scholar
  32. Tian, Y., Zhang, X., Sun, B., Jin, Z., & Wu, S. (2015). Starch sodium dodecenyl succinate prepared by one-step extrusion and its properties. Carbohydrate Polymers, 133, 90–93.  https://doi.org/10.1016/j.carbpol.2015.06.085.CrossRefGoogle Scholar
  33. Wu, B. C., & McClements, D. J. (2015). Microgels formed by electrostatic complexation of gelatin and OSA starch: potential fat or starch mimetics. Food Hydrocolloids, 47, 87–93.  https://doi.org/10.1016/j.foodhyd.2015.01.021.CrossRefGoogle Scholar
  34. Wu, X., Chang, Y., Fu, Y., Ren, L., Tong, J., & Zhou, J. (2016). Effects of non-solvent and starch solution on formation of starch nanoparticles by nanoprecipitation. Starch-Starke, 68(3–4), 258–263.  https://doi.org/10.1002/star.201500269.CrossRefGoogle Scholar
  35. Xiao, H., Yang, T., Lin, Q., Liu, G., Zhang, L., Yu, F., & Chen, Y. (2016). Acetylated starch nanocrystals : preparation and antitumor drug delivery study. International Journal of Biological Macromolecules, 89, 456–464.  https://doi.org/10.1016/j.ijbiomac.2016.04.037.CrossRefGoogle Scholar
  36. Yan, X., Chang, Y., Wang, Q., Fu, Y., Ren, L., & Zhou, J. (2018). Influence of precipitation conditions on crystallinity of amylose nanoparticles. Starch-Starke, 70(7-8).  https://doi.org/10.1002/star.201700213.
  37. Yang, J., Xie, F., Wen, W., Chen, L., Shang, X., & Liu, P. (2016). Understanding the structural features of high-amylose maize starch through hydrothermal treatment. International Journal of Biological Macromolecules, 84, 268–274.  https://doi.org/10.1016/j.ijbiomac.2015.12.033.CrossRefGoogle Scholar
  38. Zhang, B., Huang, Q., Luo, F. X., Fu, X., Jiang, H., & Jane, J. L. (2011). Effects of octenylsuccinylation on the structure and properties of high-amylose maize starch. Carbohydrate Polymers, 84(4), 1276–1281.  https://doi.org/10.1016/j.carbpol.2011.01.020.CrossRefGoogle Scholar
  39. Zhou, J., Tong, J., Su, X., & Ren, L. (2016). Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid. International Journal of Biological Macromolecules, 91, 186–1193.  https://doi.org/10.1016/j.ijbiomac.2016.06.082.Google Scholar
  40. Zhu, J., Li, L., Chen, L., & Li, X. (2013). Nano-structure of octenyl succinic anhydride modified starch micelle. Food Hydrocolloids, 32(1), 1–8.  https://doi.org/10.1016/j.foodhyd.2012.11.033.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de PosgradoTecnológico Nacional de México/I.T. MéridaMéridaMexico
  2. 2.Facultad de Ingeniería QuímicaUniversidad Autónoma de YucatánMéridaMexico
  3. 3.Departamento de NanomaterialesCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad QuerétaroQuerétaroMexico

Personalised recommendations