Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 10, pp 1721–1732 | Cite as

Effects of Plasma-Activated Water and Blanching on Microbial and Physicochemical Properties of Tiger Nuts

  • Aliyu Idris Muhammad
  • Weijun Chen
  • Xinyu Liao
  • Qisen Xiang
  • Donghong LiuEmail author
  • Xingqian Ye
  • Tian DingEmail author
Original Paper
  • 73 Downloads

Abstract

This study evaluated the effect of plasma-activated water (PAW) treatment and blanching on the microbial and quality attributes of tiger nuts. In this study, 15 min of single PAW-10 washing and blanching at 60 °C for 5 min (BLN) resulted in 3.53 and 3.51 log CFU/g reductions for Klebsiella pneumoniae and 3.22 and 3.14 log CFU/g for total background bacteria. The sequential treatment of PAW-10 and BLN led to 3.7 and 4.36 log CFU/g reductions in K. pneumoniae and total background bacteria, respectively. Total phenolic content, lipid oxidation, DPPH scavenging activity, and sensory attributes of the treated tiger nut extracts did not change significantly compared with the control, whereas pH, total color value, FRAP radical scavenging activity, and total flavonoid content were altered. The microbial inactivation and changes observed in the treated samples were attributed to the synergistic effects of reactive species and blanching during the individual and combined treatment. This result has established PAW in combination with BLN as a promising hurdle intervention to curtail the spread of microorganisms.

Keywords

Tiger nuts Plasma-activated water Blanching Reactive oxygen species Sensory characteristics Antioxidant capacity 

Notes

Funding Information

The study was financially supported by the National Key Research and Development Program of China (2017YFD0400403), the Henan Key Laboratory of Cold Chain Food Quality and Safety Control (CCFQ2018YB-07), and the Special Fund for Agroscientific Research in the Public Interest (201403071-5). The China Scholarship Council funded the graduate study under the Ministry of Education of the People’s Republic of China.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Adebajo, L. O. (1993). Microbial counts and invert sugars in juice extracts from stored tubers of Cyperus esculentus Linn. (earth almond). Food / Nahrung, 37(6), 607–612.  https://doi.org/10.1002/food.19930370614.CrossRefGoogle Scholar
  2. Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152.  https://doi.org/10.1016/j.jsps.2012.05.002.CrossRefGoogle Scholar
  3. Badejo, A. A., Damilare, A., & Ojuade, T. D. (2014). Processing effects on the antioxidant activities of beverage blends developed from Cyperus esculentus, Hibiscus sabdariffa, and Moringa oleifera extracts. Preventive Nutrition and Food Science, 19(3), 227–233.  https://doi.org/10.3746/pnf.2014.19.3.227.CrossRefGoogle Scholar
  4. Buchner, N., Krumbein, A., Rohn, S., & Kroh, L. W. (2006). Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communications in Mass Spectrometry : RCM, 20(24), 3229–3235.  https://doi.org/10.1002/rcm.CrossRefGoogle Scholar
  5. Choi, E. J., Park, H. W., Kim, S. B., Ryu, S., Lim, J., Hong, E. J., Byeon, Y. S., & Chun, H. H. (2019). Sequential application of plasma-activated water and mild heating improves microbiological quality of ready-to-use shredded salted Chinese cabbage (Brassica pekinensis L.). Food Control, 98, 501–509.  https://doi.org/10.1016/j.foodcont.2018.12.007.CrossRefGoogle Scholar
  6. Cliffe-Byrnes, V., & O’Beirne, D. (2008). Effects of washing treatment on microbial and sensory quality of modified atmosphere (MA) packaged fresh sliced mushroom (Agaricus bisporus). Postharvest Biology and Technology, 48(2), 283–294.  https://doi.org/10.1016/j.postharvbio.2007.10.012.CrossRefGoogle Scholar
  7. Codina-Torrella, I., Guamis, B., & Trujillo, A. J. (2015). Characterization and comparison of tiger nuts (Cyperus esculentus L.) from different geographical origin physico-chemical characteristics and protein fractionation. Industrial Crops and Products, 65, 406–414.  https://doi.org/10.1016/j.indcrop.2014.11.007.CrossRefGoogle Scholar
  8. Corrales, M., De Souza, P. M., Stahl, M. R., & Fernández, A. (2012). Effects of the decontamination of a fresh tiger nuts’ milk beverage (horchata) with short wave ultraviolet treatments (UV-C) on quality attributes. Innovative Food Science and Emerging Technologies, 13, 163–168.  https://doi.org/10.1016/j.ifset.2011.07.015.CrossRefGoogle Scholar
  9. Fan, L., Hou, F., Muhammad, A. I., Ruiling, L., Watharkar, R. B., Guo, M., Ding, T., & Liu, D. (2019). Synergistic inactivation and mechanism of thermal and ultrasound treatments against Bacillus subtilis spores. Food Research International, 116, 1094–1102.  https://doi.org/10.1016/j.foodres.2018.09.052.CrossRefGoogle Scholar
  10. Fröhling, A., Ehlbeck, J., & Schlüter, O. (2018). Impact of a pilot-scale plasma-assisted washing process on the culturable microbial community dynamics related to fresh-cut endive lettuce. Applied Sciences, 8(11), 2225.  https://doi.org/10.3390/app8112225.CrossRefGoogle Scholar
  11. Gera, N., & Doores, S. (2011). Kinetics and mechanism of bacterial inactivation by ultrasound waves and sonoprotective effect of milk components. Journal of Food Science, 76(2), 111–119.  https://doi.org/10.1111/j.1750-3841.2010.02007.x.CrossRefGoogle Scholar
  12. Gil, M. I., Aguayo, E., & Kader, A. A. (2006). Quality changes and nutrient retention in fresh-cut versus whole fruits during storage. Journal of Agricultural and Food Chemistry, 54(12), 4284–4296.  https://doi.org/10.1021/jf060303y.CrossRefGoogle Scholar
  13. Gironés-Vilaplana, A., Huertas, J. P., Moreno, D. A., Periago, P. M., & García-Viguera, C. (2016). Quality and microbial safety evaluation of new isotonic beverages upon thermal treatments. Food Chemistry, 194, 455–462.  https://doi.org/10.1016/j.foodchem.2015.08.011.CrossRefGoogle Scholar
  14. Gómez-López, V. M., Lannoo, A. S., Gil, M. I., & Allende, A. (2014). Minimum free chlorine residual level required for the inactivation of Escherichia coli O157: H7 and trihalomethane generation during dynamic washing of fresh-cut spinach. Food Control, 42, 132–138.  https://doi.org/10.1016/j.foodcont.2014.01.034.CrossRefGoogle Scholar
  15. Guo, J., Huang, K., Wang, X., Lyu, C., Yang, N., Li, Y., & Wang, J. (2017). Inactivation of yeast on grapes by plasma-activated water and its effects on quality attributes. Journal of Food Protection, 80(2), 225–230.  https://doi.org/10.4315/0362-028X.JFP-16-116.CrossRefGoogle Scholar
  16. Hoac, T., Daun, C., Trafikowska, U., Zackrisson, J., & Åkesson, B. (2006). Influence of heat treatment on lipid oxidation and glutathione peroxidase activity in chicken and duck meat. Innovative Food Science and Emerging Technologies, 7(1-2), 88–93.  https://doi.org/10.1016/j.ifset.2005.10.001.CrossRefGoogle Scholar
  17. Jaiswal, A. K., Gupta, S., & Abu-Ghannam, N. (2012). Kinetic evaluation of colour, texture, polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment. Food Chemistry, 131(1), 63–72.  https://doi.org/10.1016/j.foodchem.2011.08.032.CrossRefGoogle Scholar
  18. Joshi, S. G., Cooper, M., Yost, A., Paff, M., Ercan, U. K., Fridman, G., Friedman, G., Fridman, A., & Brooks, A. D. (2011). Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial Agents and Chemotherapy, 55(3), 1053–1062.  https://doi.org/10.1128/AAC.01002-10.CrossRefGoogle Scholar
  19. Julák, J., Hujacová, A., Scholtz, V., Khun, J., & Holada, K. (2018). Contribution to the chemistry of plasma-activated water. Plasma Physics Reports, 44(1), 125–136.  https://doi.org/10.1134/S1063780X18010075.CrossRefGoogle Scholar
  20. Kim, C., Hung, Y., & Brackett, R. E. (2000). Roles of oxidation - reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. Journal of Food Protection, 63(1), 19–24.CrossRefGoogle Scholar
  21. Kim, H.-J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control, 47, 451–456.  https://doi.org/10.1016/j.foodcont.2014.07.053.CrossRefGoogle Scholar
  22. Kizzie-Hayford, N., Jaros, D., Schneider, Y., & Rohm, H. (2015). Physico-chemical properties of globular tiger nut proteins. European Food Research and Technology, 241(6), 835–841.  https://doi.org/10.1007/s00217-015-2508-9.CrossRefGoogle Scholar
  23. Kovačević, D. B., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317–323.  https://doi.org/10.1016/j.foodchem.2015.05.099.CrossRefGoogle Scholar
  24. Kumar, V., Kushwaha, R., Goyal, A., Tanwar, B., & Kaur, J. (2018). Process optimization for the preparation of antioxidant rich ginger candy using beetroot pomace extract. Food Chemistry, 245(June 2017), 168–177.  https://doi.org/10.1016/j.foodchem.2017.10.089.CrossRefGoogle Scholar
  25. Li, J., Cheng, H., Liao, X., Liu, D., Xiang, Q., Wang, J., Chen, S., Ye, X., & Ding, T. (2019). Inactivation of Bacillus subtilis and quality assurance in Chinese bayberry (Myrica rubra) juice with ultrasound and mild heat. Lwt, 108, 113–119.  https://doi.org/10.1016/j.lwt.2019.03.061.CrossRefGoogle Scholar
  26. Liao, X., Cullen, P. J., Liu, D., Muhammad, A. I., Chen, S., Ye, X., Wang, J., & Ding, T. (2018a). Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. Science of The Total Environment, 645, 1287–1295.  https://doi.org/10.1016/j.scitotenv.2018.07.190.CrossRefGoogle Scholar
  27. Liao, X., Li, J., Muhammad, A. I., Suo, Y., Ahn, J., Liu, D., Chen, S., Hu, Y., Ye, X., & Ding, T. (2018b). Preceding treatment of non-thermal plasma (NTP) assisted the bactericidal effect of ultrasound on Staphylococcus aureus. Food Control, 90, 241–248.  https://doi.org/10.1016/j.foodcont.2018.03.008.CrossRefGoogle Scholar
  28. Liao, X., Li, J., Muhammad, A. I., Suo, Y., Chen, S., Ye, X., Liu, D., & Ding, T. (2018c). Application of a dielectric barrier discharge atmospheric cold plasma (Dbd-Acp) for Escherichia coli inactivation in apple juice. Journal of Food Science, 83(2), 401–408.  https://doi.org/10.1111/1750-3841.14045.CrossRefGoogle Scholar
  29. Liu, Z. C., Liu, D. X., Chen, C., Li, D., Yang, A. J., Rong, M. Z., Chen, H. L., & Kong, M. G. (2015). Physicochemical processes in the indirect interaction between surface air plasma and deionized water. Journal of Physics D: Applied Physics, 48(49), 495201.  https://doi.org/10.1088/0022-3727/48/49/495201.CrossRefGoogle Scholar
  30. López-Gálvez, F., Allende, A., Selma, M. V., & Gil, M. I. (2009). Prevention of Escherichia coli cross-contamination by different commercial sanitizers during washing of fresh-cut lettuce. International Journal of Food Microbiology, 133(1-2), 167–171.  https://doi.org/10.1016/j.ijfoodmicro.2009.05.017.CrossRefGoogle Scholar
  31. López-Gálvez, F., Tudela, J. A., Allende, A., & Gil, M. I. (2018). Microbial and chemical characterization of commercial washing lines of fresh produce highlights the need for process water control. Innovative Food Science and Emerging Technologies, 0–1.  https://doi.org/10.1016/j.ifset.2018.05.002.
  32. Lu, P., Boehm, D., Bourke, P., & Cullen, P. J. (2017). Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Processes and Polymers, 14(8), 1–9.  https://doi.org/10.1002/ppap.201600207.CrossRefGoogle Scholar
  33. Ma, R., Wang, G., Tian, Y., Wang, K., Zhang, J., & Fang, J. (2015). Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. Journal of Hazardous Materials, 300, 643–651.  https://doi.org/10.1016/j.jhazmat.2015.07.061.CrossRefGoogle Scholar
  34. Ma, R., Yu, S., Tian, Y., Wang, K., Sun, C., Li, X., Zhang, J., Chen, K., & Fang, J. (2016). Effect of non-thermal plasma-activated water on fruit decay and quality in postharvest chinese bayberries. Food and Bioprocess Technology, 9(11), 1825–1834.  https://doi.org/10.1007/s11947-016-1761-7.CrossRefGoogle Scholar
  35. Machala, Z., Tarabova, B., Hensel, K., Spetlikova, E., Sikurova, L., & Lukes, P. (2013). Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Processes and Polymers, 10(7), 649–659.  https://doi.org/10.1002/ppap.201200113.CrossRefGoogle Scholar
  36. Muhammad, A. I., Li, Y., Liao, X., Liu, D., Ye, X., Chen, S., Hu, Y., Wang, J., & Ding, T. (2018a). Effect of dielectric barrier discharge plasma on background microflora and physicochemical properties of tiger nut milk. Food Control, 96(2019), 119–127.  https://doi.org/10.1016/j.foodcont.2018.09.010.Google Scholar
  37. Muhammad, A. I., Liao, X., Cullen, P. J., Liu, D., Xiang, Q., Wang, J., Chen, S., Ye, X., & Ding, T. (2018b). Effects of nonthermal plasma technology on functional food components. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1379–1394.  https://doi.org/10.1111/1541-4337.12379.CrossRefGoogle Scholar
  38. Muhammad, A. I., Xiang, Q., Liao, X., Liu, D., & Ding, T. (2018c). Understanding the impact of nonthermal plasma on food constituents and microstructure —a review. Food and Bioprocess Technology, 11(3), 463–486.  https://doi.org/10.1007/s11947-017-2042-9.CrossRefGoogle Scholar
  39. Pankaj, S. K. S. K., Wan, Z., Colonna, W., & Keener, K. M. (2017). Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture, 97(12), 4016–4021.  https://doi.org/10.1002/jsfa.8268.CrossRefGoogle Scholar
  40. Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.  https://doi.org/10.1007/s11947-012-0867-9.CrossRefGoogle Scholar
  41. Pu, Y., Ding, T., Wang, W., Xiang, Y., Ye, X., Li, M., & Liu, D. (2018). Effect of harvest, drying and storage on the bitterness, moisture, sugars, free amino acids and phenolic compounds of jujube fruit (Zizyphus jujuba cv. Junzao). Journal of the Science of Food and Agriculture, 98(2), 628–634.  https://doi.org/10.1002/jsfa.8507.CrossRefGoogle Scholar
  42. Ren, F., Perussello, C. A., Zhang, Z., Gaffney, M. T., Kerry, J. P., & Tiwari, B. K. (2018). Enhancement of phytochemical content and drying efficiency of onions (Allium cepa L.) through blanching. Journal of the Science of Food and Agriculture, 98(4), 1300–1309.  https://doi.org/10.1002/jsfa.8594.CrossRefGoogle Scholar
  43. Roselló-Soto, E., Poojary, M. M., Barba, F. J., Koubaa, M., Lorenzo, J. M., Mañes, J., & Moltó, J. C. (2018). Thermal and non-thermal preservation techniques of tiger nuts’ beverage “horchata de chufa”. Implications for food safety, nutritional and quality properties. Food Research International, 105(2017), 945–951.  https://doi.org/10.1016/j.foodres.2017.12.014.CrossRefGoogle Scholar
  44. Sánchez-Zapata, E., Fernández-López, J., & Angel Pérez-Alvarez, J. (2012). Tiger nut (Cyperus esculentus) commercialization: health aspects, composition, properties, and food applications. Comprehensive Reviews in Food Science and Food Safety, 11(4), 366–377.  https://doi.org/10.1111/j.1541-4337.2012.00190.x.CrossRefGoogle Scholar
  45. Sapers, G. M., & Doyle, M. P. (2014). Scope of the produce contamination problem. In K. R. Matthews, G. M. Sapers, & C. P. Gerba (Eds.), The produce contamination problem: causes and solutions (2nd ed., pp. 3–20). Academic Press.  https://doi.org/10.1016/B978-0-12-404611-5.00001-4.
  46. Sebastià, N., El-Shenawy, M., Mañes, J., & Soriano, J. M. (2012). Assessment of microbial quality of commercial and home-made tiger-nut beverages. Letters in Applied Microbiology, 54(4), 299–305.  https://doi.org/10.1111/j.1472-765X.2012.03212.x.CrossRefGoogle Scholar
  47. Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J., & Fang, J. (2016). Bactericidal fffects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Scientific Reports, 6, 28505.  https://doi.org/10.1038/srep28505.CrossRefGoogle Scholar
  48. Shitu, A., Muhammad, A. I. ., Yoshida, H., & Izhar, S. (2016). Production of phenolic compounds from durian peel waste using sub-critical water. In Proceeding of the International Conference on Agricultural and Food Engineering (Cafei2016) (pp. 23–25).Google Scholar
  49. Singh, S., & Shalini, R. (2016). Effect of hurdle technology in food preservation: a review. Critical Reviews in Food Science and Nutrition, 56(4), 641–649.  https://doi.org/10.1080/10408398.2012.761594.CrossRefGoogle Scholar
  50. Tango, C. N., Wang, J., & Oh, D. H. (2014). Modeling of Bacillus cereus growth in brown rice submitted to a combination of ultrasonication and slightly acidic electrolyzed water treatment. Journal of Food Protection, 77(12), 2043–2053.  https://doi.org/10.1007/978-3-319-02786-9_2.CrossRefGoogle Scholar
  51. Tian, Y., Ma, R., Zhang, Q., Feng, H., Liang, Y., Zhang, J., & Fang, J. (2014). Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface. Plasma Processes and Polymers., 12(5), 439–449.  https://doi.org/10.1002/ppap.201400082.CrossRefGoogle Scholar
  52. WHO. (2017). World Health Organization - Food safety. Retrieved December 25, 2018, from https://www.who.int/en/news-room/fact-sheets/detail/food-safety.
  53. Xiang, Q., Liu, X., Li, J., Liu, S., Zhang, H., & Bai, Y. (2018). Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice. Food Chemistry, 254(136), 201–207.  https://doi.org/10.1016/j.foodchem.2018.02.008.CrossRefGoogle Scholar
  54. Xiang, Q., Liu, X., Liu, S., Ma, Y., Xu, C., & Bai, Y. (2019). Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innovative Food Science and Emerging Technologies, 52(136). https://doi.org/S1466856418306453), 49–56.CrossRefGoogle Scholar
  55. Xiao, H. W., Pan, Z., Deng, L. Z., El-Mashad, H. M., Yang, X. H., Mujumdar, A. S., Gao, Z. J., & Zhang, Q. (2017). Recent developments and trends in thermal blanching – a comprehensive review. Information Processing in Agriculture, 4(2), 101–127.  https://doi.org/10.1016/j.inpa.2017.02.001.CrossRefGoogle Scholar
  56. Xu, Y., Tian, Y., Ma, R., Liu, Q., & Zhang, J. (2016). Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chemistry, 197, 436–444.  https://doi.org/10.1016/j.foodchem.2015.10.144.CrossRefGoogle Scholar
  57. Xuan, X. T., Ding, T., Li, J., Ahn, J. H., Zhao, Y., Chen, S., Ye, X., & Liu, D. (2017). Estimation of growth parameters of Listeria monocytogenes after sublethal heat and slightly acidic electrolyzed water (SAEW) treatment. Food Control, 71, 17–25.  https://doi.org/10.1016/j.foodcont.2016.06.018.CrossRefGoogle Scholar
  58. Zhang, S., Yang, G., Ye, Q., Wu, Q., & Zhang, J. (2018). Phenotypic and genotypic characterization of Klebsiella pneumoniae isolated from retail foods in China. Front. Microbiol, 9, 1–11.  https://doi.org/10.3389/fmicb.2018.00289.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food ProcessingZhejiang UniversityHangzhouChina
  2. 2.Department of Agricultural and Environmental Engineering, Faculty of EngineeringBayero UniversityKanoNigeria
  3. 3.Henan Key Laboratory of Cold Chain Food Quality and Safety ControlZhengzhou University of Light IndustryZhengzhouChina
  4. 4.Ningbo Research InstituteZhejiang UniversityNingboChina
  5. 5.College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina

Personalised recommendations