Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 10, pp 1766–1775 | Cite as

Icariin as a Preservative to Maintain the Fruit Quality of Banana During Postharvest Storage

  • Jiali Yang
  • Hong Zhu
  • Jiaming Tu
  • Yueming Jiang
  • Jun Zeng
  • Bao YangEmail author
Original Paper
  • 58 Downloads

Abstract

Banana is a tropical fruit with good palatability and multiple health benefits. However, the fruit quality is readily deteriorated during postharvest storage. In this work, icariin was used to treat banana to maintain the fruit quality. NMR spectroscopy was applied to analyze the effect of icariin on the metabolite profiles of banana. It was found that the fruit quality of banana was well maintained after icariin treatment. The data of 1D and 2D NMR spectra revealed the composition of metabolites, whose contents greatly varied during storage. The first principal components included ethanol, acetic acid, saponin b, salsolinol, dopamine, glucose, and linoleic acid. After icariin treatment, the conversion of starch to α-d-glucose and β-d-glucose was delayed, and the production of γ-aminobutyrate, glutamine, and alanine increased. These results indicated that icariin could effectively maintain the fruit quality and delay the senescence of banana.

Graphical Abstract

Keywords

Icariin Banana Metabolite NMR Postharvest storage 

Notes

Funding Information

This study was financially supported by the National Key Research and Development Program of China (2017YFD0401301), the National Natural Science Foundation of China (31671906, 31772371, and 31871851), the Frontier Science Key Program of Chinese Academy of Sciences (QYZDB-SSW-SMC018), and the Science and Technology Plan of Guangdong Province (2018A050506062).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Alkarkhi, A. F. M., Ramli, S., Yong, Y. S., & Easa, A. M. (2011). Comparing physicochemical properties of banana pulp and peel flours prepared from green and ripe fruits. Food Chemistry, 129(2), 312–318.CrossRefGoogle Scholar
  2. Benari, Y., Gaiarsa, J. L., Tyzio, R., & Khazipov, R. (2007). GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiological Reviews, 87(4), 1215–1284.CrossRefGoogle Scholar
  3. Bressan, R. A., & Crippa, J. A. (2005). The role of dopamine in reward and pleasure behaviour--review of data from preclinical research. Acta Psychiatrica Scandinavica, 111(427), 14–21.CrossRefGoogle Scholar
  4. Chen, L., Zhou, Y., He, Z. Y., Liu, Q., Lai, S. J., & Yang, H. S. (2018). Effect of exogenous ATP on the postharvest properties and pectin degradation of mung bean sprouts (Vigna radiata). Food Chemistry, 251, 9–17.CrossRefGoogle Scholar
  5. Chen, L., Wu, J. E., Li, Z. M., Liu, Q., Zhao, X., & Yang, H. S. (2019). Metabolomic analysis of energy regulated germination and sprouting of organic mung bean (Vigna radiata) using NMR spectroscopy. Food Chemistry, 286, 87–97.CrossRefGoogle Scholar
  6. Cheng, G. P., Duan, X. W., Jiang, Y. M., Sun, J., Yang, S. Y., Yang, B., He, S. G., Liang, H., & Luo, Y. B. (2009). Modification of hemicellulose polysaccharides during ripening of postharvest banana fruit. Food Chemistry, 115(1), 43–47.CrossRefGoogle Scholar
  7. Choi, Y. H., Tapias, E. C., Kim, H. K., Lefeber, A. W., Erkelens, C., Verhoeven, J. T., Brzin, J., Zel, J., & Verpoorte, R. (2004). Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiology, 135(4), 2398–2410.CrossRefGoogle Scholar
  8. Deewatthanawong, R., & Watkins, C. (2010). Accumulation of γ-aminobutyric acid in apple, strawberry and tomato fruit in response to postharvest treatments. Acta Horticulturae, 877, 947–952.CrossRefGoogle Scholar
  9. Fang, J., & Zhang, Y. (2017). Icariin, an anti-atherosclerotic drug from Chinese Medicinal herb horny goat weed. Frontiers in Pharmacology, 8, 734.CrossRefGoogle Scholar
  10. Huang, H., Zhu, Q. Q., Zhang, Z. K., Yang, B., Duan, X. W., & Jiang, Y. M. (2013). Effect of oxalic acid on antibrowning of banana (Musa spp., AAA group, cv. ‘Brazil’) fruit during storage. Scientia Horticulturae, 160, 208–212.CrossRefGoogle Scholar
  11. Jing, X., Yin, W., Tian, H., Chen, M., Yao, X., Zhu, W., Guo, F., & Ye, Y. (2018). Icariin doped bioactive glasses seeded with rat adipose-derived stem cells to promote bone repair via enhanced osteogenic and angiogenic activities. Life Sciences, 202(1), 52–60.CrossRefGoogle Scholar
  12. Juricic, M. A., Berríos-Cárcamo, P. A., Acevedo, M. L., Israel, Y., Almodóvar, I., & Cassels, B. K. (2012). Salsolinol and isosalsolinol: condensation products of acetaldehyde and dopamine. Separation of their enantiomers in the presence of a large excess of dopamine. Journal of Pharmaceutical and Biomedical Analysis, 63(7), 170–174.CrossRefGoogle Scholar
  13. Li, Y. X., Zhang, L. F., Chen, F. S., Lai, S. J., & Yang, H. S. (2018). Effects of vacuum impregnation with calcium ascorbate and disodium stannous citrate on Chinese red bayberry. Food and Bioprocess Technology, 11(7), 1300–1316.CrossRefGoogle Scholar
  14. Lin, T. P., Wade, C. R., Pérez, L. M., & Gabbaï, F. P. (2010). A mercury→antimony interaction. Angewandte Chemie, 122(36), 6501–6504.CrossRefGoogle Scholar
  15. Liu, J., Yuan, Y., Wu, Q., Zhao, Y., Jiang, Y., John, A., Wen, L., Li, T., Jian, Q., & Yang, B. (2017). Analyses of quality and metabolites levels of okra during postharvest senescence by 1H-high resolution NMR. Postharvest Biology and Technology, 132, 171–178.Google Scholar
  16. Nonaka, S., Arai, C., Takayama, M., Matsukura, C., & Ezura, H. (2017). Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Scientific Reports, 7(1), 7057.CrossRefGoogle Scholar
  17. Pongprasert, N., & Srilaong, V. (2014). A novel technique using 1-MCP microbubbles for delaying postharvest ripening of banana fruit. Postharvest Biology and Technology, 95(3), 42–45.CrossRefGoogle Scholar
  18. Tao ZR, Liu J, Jiang YM, Gong L, & Yang B. (2017). Synthesis of prenylated flavonols and their potents as estrogen receptor modulator. Scientific Reports, 7, 12445.Google Scholar
  19. Yang, X. M., Jiang, Y. M., Yang, J. L., He, J. R., Sun, J., Chen, F., Zhang, M. W., & Yang, B. (2015). Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends in Food Science and Technology, 44(1), 93–104.CrossRefGoogle Scholar
  20. Yang, J. L., Wen, L. R., Jiang, Y. M., & Yang, B. (2019). Natural estrogen receptor modulators and their heterologous biosynthesis. Trends in Endocrinology and Metabolism, 30(1), 66–76.CrossRefGoogle Scholar
  21. Yuan, Y., Zhao, Y., Yang, J., Jiang, Y., Lu, F., Jia, Y., & Yang, B. (2017). Metabolomic analyses of banana during postharvest senescence by 1H-high resolution-NMR. Food Chemistry, 218, 406–412.CrossRefGoogle Scholar
  22. Zanassi, P., Paolillo, M., Montecucco, A., Avvedimento, E. V., & Schinelli, S. (2015). Pharmacological and molecular evidence for dopamine D1 receptor expression by striatal astrocytes in culture. Journal of Neuroscience Research, 58(4), 544–552.CrossRefGoogle Scholar
  23. Zhang, P., Whistler, R. L., BeMiller, J. N., & Hamaker, B. R. (2005). Banana starch: production, physicochernical properties, and digestibility - a review. Carbohydrate Polymers, 59(4), 443–458.CrossRefGoogle Scholar
  24. Zhu, Q., Jiang, Y., Lin, S., Wen, L., Wu, D., Zhao, M., Chen, F., Jia, Y., & Yang, B. (2013). Structural identification of (1 → 6)-alpha-D-glucan, a key responsible for the health benefits of longan, and evaluation of anticancer activity. Biomacromolecules., 14(6), 1999–2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiali Yang
    • 1
    • 2
  • Hong Zhu
    • 1
    • 2
  • Jiaming Tu
    • 1
    • 2
  • Yueming Jiang
    • 1
    • 2
  • Jun Zeng
    • 1
    • 2
  • Bao Yang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations