Food and Bioprocess Technology

, Volume 12, Issue 10, pp 1741–1755 | Cite as

Extraction and Characterization of Phenolic Compounds from Bamboo Shoot Shell Under Optimized Ultrasonic-Assisted Conditions: a Potential Source of Nutraceutical Compounds

  • Lei Jiang
  • Tarun Belwal
  • Hao Huang
  • Zhiwei Ge
  • Jarukitt Limwachiranon
  • Yechao Zhao
  • Li Li
  • Guoping Ren
  • Zisheng LuoEmail author
Original Paper


The extraction and characterization of bioactive compounds from bamboo shoot shell was performed under ultrasonic-assisted extraction (UAE) along with UPLC-Triple-TOF/MS analysis. Under optimized UAE conditions (ethanol concentration (58%), liquid to solid ratio (24 mL/g), extraction temperature (59 °C), and sonication time (29 min)), total phenolic content (TPC) was recorded highest as 85.3 mg GAE/g DW, while DPPH and FRAP antioxidant activities were 77 μmol AAE/g DW and 33 μmol AAE/g DW, respectively. Using UPLC-Triple-TOF/MS analysis, fifteen phenolic acids, seven flavonoids, nineteen organic acids, two iridoid glucosides, and one neoglinan were identified. Among them, p-coumaric acid (119 μg/g DW), chlorogenic acid (87 μg/g DW), rutin (39 μg/g DW), and ferulic acid (17 μg/g DW) were found to be the most abundant phenolic compounds. Furthermore, compounds including phenolic acids (3-p-coumaroylquinic acid, cryptochlorogenic acid, 3-O-feruloylquinic acid, 5-O-feruloylquinic acid, 3-O-caffeoylshikimic acid, 5-p-coumaroylquinic acid, 1,3-dicaffeoyl quinic acid, 3,5-dicaffeoyl quinic acid), flavonoids (schaftoside/c-hexosyl-c-pentosylapigenin, apigenin 6,8-di-C-α-l-arabinopyranoside, kaempferide 3-O-α-l-rhamnopyranosyl(1->6)-β-d-glucopyranoside, 6-C-β-d-glucopyranosyl-8-C-α-l-arabinopyranosylchrysin, narcissin), some organic acids, iridoid glucosides, and neolignan were also detected for the first time from bamboo shoot shell extract. The present study revealed that bamboo shoot shell extract contains a larger number of nutraceutically active compounds which can be further utilized by food and nutraceutical industries.


Bamboo shoot shell UPLC-Triple-TOF/MS Phenolic compounds Ultrasonic-assisted extraction 



Analysis of variance


Box–Behnken design




Ferric-reducing antioxidant power


High-performance liquid chromatography


Least significant difference


Mass spectrometry


Response surface methodology


Time of flight


Total phenolic content




Ultrasonic-assisted extraction


Ultra-performance liquid chromatography


Funding information

This study was funded by the Key Research and Development Program of Zhejiang province (2018C02049), the National Natural Science Foundation of China (31371856, 31571895), and the Special Research on Agricultural Scientific Research of Hangzhou (20160432B23).


  1. Al-Musayeib, N., Perveen, S., Fatima, I., Nasir, M., & Hussain, A. (2011). Antioxidant, anti-glycation and anti-inflammatory activities of phenolic constituents from Cordia sinensis. Molecules, 16(12), 10214–10226.Google Scholar
  2. Belwal, T., Bhatt, I. D., Rawal, R. S., & Pande, V. (2017a). Microwave-assisted extraction (MAE) conditions using polynomial design for improving antioxidant phytochemicals in Berberis asiatica Roxb. ex DC. leaves. Industrial Crops and Products, 95, 393–403.Google Scholar
  3. Belwal, T., Giri, L., Bhatt, I. D., Rawal, R. S., & Pande, V. (2017b). An improved method for extraction of nutraceutically important polyphenolics from Berberis jaeschkeana C.K. Schneid. Fruits. Food Chemistry, 230, 657–666.Google Scholar
  4. Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., Devkota, H. P., Orhan, I. E., Patra, J. K., Das, G., Anandharamakrishnan, C., Gomez-Gomez, L., Nabavi, S. F., Nabavi, S. M., & Atanasov, A. G. (2018). A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. TrAC Trends in Analytical Chemistry, 100, 82–102.Google Scholar
  5. Benzie, I., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76.Google Scholar
  6. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie, 28(1), 25–30.Google Scholar
  7. Cadiz-Gurrea, M. D. L. L., Fernandez-Arroyo, S., Joven, J., & Segura-Carretero, A. (2013). Comprehensive characterization by UHPLC-ESI-Q-TOF-MS from an Eryngium bourgatii extract and their antioxidant and anti-inflammatory activities. Food Research International, 50(1), 197–204.Google Scholar
  8. Choudhury, D., Sahu, J. K., & Sharma, G. D. (2012). Bamboo shoot: microbiology, biochemistry and technology of fermentation-a review. Indian Journal of Traditional Knowledge, 11(2), 242–249.Google Scholar
  9. Clifford, M. N., Knight, S., & Kuhnert, N. (2005). Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. Journal of Agricultural and Food Chemistry, 53(10), 3821–3832.Google Scholar
  10. Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302.Google Scholar
  11. Domínguez-Perles, R., Teixeira, A. I., Rosa, E., & Barros, A. I. (2014). Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and response surface methodology. Food Chemistry, 164(3), 339–346.Google Scholar
  12. Dong, Q., Huang, Y., & Qiao, S. (2007). Studies on chemical constituents from Stellaria media i. China Journal of Chinese Materia Medica, 32(11), 1048–1051 (in Chinese).Google Scholar
  13. Feng, S., Luo, Z., Tao, B., & Chen, C. (2015). Ultrasonic-assisted extraction and purification of phenolic compounds from sugarcane (Saccharum officinarum L.) rinds ☆. LWT - Food Science and Technology, 60(2), 970–976.Google Scholar
  14. Gong, W., Xiang, Z., Ye, F., & Zhao, G. (2016). Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo (Dendrocalamus Latiforus). Industrial Crops and Products, 91, 340–349.Google Scholar
  15. Grunovaitė, L., Pukalskienė, M., Pukalskas, A., & Venskutonis, P. R. (2016). Fractionation of black chokeberry pomace into functional ingredients using high pressure extraction methods and evaluation of their antioxidant capacity and chemical composition. Journal of Functional Foods, 24, 85–96.Google Scholar
  16. Han, X. F., & Jin, J. C. (2015). Study on the properties and extraction of insoluble dietary fiber from bamboo shells. Guangzhou Chemical Industry, 43(2), 56–58 (in Chinese).Google Scholar
  17. Herz, W., & Kulanthaivel, P. (1985). Trihydroxy-c-18-acids and a labdane from Rudbeckia Fulgida. Phytochemistry, 24(1), 89–91.Google Scholar
  18. Hossain, M. B., Brunton, N. P., Patras, A., Tiwari, B., O’Donnell, C. P., Martindiana, A. B., & Barryryan, C. (2012). Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrasonics Sonochemistry, 19(3), 582–590.Google Scholar
  19. Ito, Y., Akao, Y., Shimazawa, M., Seki, N., Nozawa, Y., & Hara, H. (2007). Lig-8, a highly bioactive lignophenol derivative from bamboo lignin, exhibits multifaceted neuroprotective activity. CNS Drug Reviews, 13(3), 296–307.Google Scholar
  20. Jiang, L., Jiang, L. K., & Chen, K. W. (2009). Ultrasonic extraction conditions of bamboo shell flavones and its antioxidative activity on oil. Natural Product Research and Development, 21, 146–151.Google Scholar
  21. Jin, Y. C., & Yuan, K. (2012). Studies on the functional components and bioactivity and the relativity of bamboo shoots and shells. Applied Mechanics and Materials, 108, 314–319.Google Scholar
  22. Jin, Y., Liu, H., & Yuan, K. (2011a). Simultaneous determination of seven effective constituents in the leaves of bamboo by reversed phase high performance liquid chromatography (RP-HPLC). Journal of Medicinal Plant Research, 5(23), 5630–5635.Google Scholar
  23. Jin, Y. K., Cho, J. Y., Ma, Y. K., Park, K. Y., Lee, S. H., Ham, K. S., Lee, H. J., Park, K. H., & Moon, J. H. (2011b). Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chemistry, 125(1), 55–62.Google Scholar
  24. Ju, Z. Y., & Howard, L. R. (2003). Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. Journal of Agricultural and Food Chemistry, 51(18), 5207–5213.Google Scholar
  25. Kweon, M. H., Hwang, H. J., & Sung, H. C. (2003). Isolation and characterization of anticomplementary beta-glucans from the shoots of bamboo Phyllostachys edulis. Planta Medica, 69(1), 56–62.Google Scholar
  26. Lamoraltheys, D., Pottier, L., Dufrasne, F., Nève, J., Dubois, J., Kornienko, A., Kiss, R., & Ingrassia, L. (2010). Natural polyphenols that display anticancer properties through inhibition of kinase activity. Current Medicinal Chemistry, 17(9), 812–825.Google Scholar
  27. Li, Y., Cheng, F., Jin, Y., & Yuan, K. (2013). Studies on the active components and antioxidant activity of the extracts from different parts of bamboo. Asian Journal of Chemistry, 25(11), 6354–6360.Google Scholar
  28. Lin, J., Arcinas, A., & Harden, L. A. (2009). Identification of acylglycerols containing dihydroxy fatty acids in castor oil by mass spectrometry. Lipids, 44(4), 359–365.Google Scholar
  29. Lin, Z., Chen, J., Zhang, J., & Brooks, M. S. L. (2018). Potential for value-added utilization of bamboo shoot processing waste—recommendations for a biorefinery approach. Food and Bioprocess Technology, 1–12.Google Scholar
  30. Liu, Y., Wei, S., & Liao, M. (2013). Optimization of ultrasonic extraction of phenolic compounds from Euryale ferox seed shells using response surface methodology. Industrial Crops and Products, 49(4), 837–843.Google Scholar
  31. Liu, Y., Tang, Q., You, Y., Zeng, S., Li, Y., Chen, D., Liu, A., Feng, C., Li, C., & Chen, D. (2016). Evaluation of the bamboo shoots' development status and nutrition in Sichuan, China. In H. Xu & Z. Zhang (Eds.), Advances in social science education and humanities research (pp. 531–534). France: Atlantis Press.Google Scholar
  32. Lu, B., Wu, X., Shi, J., Dong, Y., & Zhang, Y. (2006). Toxicology and safety of antioxidant of bamboo leaves. Part 2: Developmental toxicity test in rats with antioxidant of bamboo leaves. Food and Chemical Toxicology, 44(10), 1739–1743.Google Scholar
  33. Lu, L., Song, F. R., Tsao, R., Jin, Y. R., Liu, Z. Q., & Liu, S. Y. (2010). Studies on the homolytic and heterolytic cleavage of kaempferol and kaempferide glycosides using electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 24(1), 169–172.Google Scholar
  34. Maier, V. P., Metzler, D. M., & Huber, A. F. (1964). 3-O-Caffeoylshikimic acid (dactylifric acid) and its isomers, a new class of enzymic browning substrates. Biochemical and Biophysical Research Communications, 14(2), 124–128.Google Scholar
  35. Markham, K. R., & Mues, R. (1984). Structure determination of 6-c-ß-d-glucopyranosyl-8-c-α-l-arabinopyranosyltricetin from radula complanata. Zeitschrift Für Naturforschung C, 39(3-4), 309–310.Google Scholar
  36. Markom, M., Hasan, M., Wan, R. W. D., Singh, H., & Jahim, J. M. (2007). Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: Effects of solvents and extraction methods. Separation and Purification Technology, 52(3), 487–496.Google Scholar
  37. Ministry of Health. (2003). Technical Standards for Testing and Assessment of Health Food. Beijing, China, pp. 203.Google Scholar
  38. Neményi, A., Stefanovitsnébányai, É., Pék, Z., Hegedűs, A., Gyuricza, C., Barócsi, Z., & Helyes, L. (2015). Total antioxidant capacity and total phenolics content of Phyllostachys taxa shoots. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1), 64–69.Google Scholar
  39. Olennikov, D. N., & Partilkhaev, V. V. (2012). Isolation and densitometric HPTLC analysis of rutin, narcissin, nicotiflorin, and isoquercitrin in Caragana spinosa shoots. JPC Journal of Planar Chromatography Modern TLC, 25(1), 30–35.Google Scholar
  40. Otsuka, H. (1993). Iridoid glucosides from Linaria japonica. Phytochemistry, 33(3), 617–622.Google Scholar
  41. Pandey, A., Belwal, T., Sekar, K. C., Bhatt, I. D., & Rawal, R. S. (2018). Optimization of ultrasonic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Industrial Crops and Products, 119, 218–225.Google Scholar
  42. Park, E. J., & Jhon, D. Y. (2009). Effects of bamboo shoot consumption on lipid profiles and bowel function in healthy young women. Nutrition, 25(7-8), 723–728.Google Scholar
  43. Park, E. J., & Jhon, D. Y. (2010). The antioxidant, angiotensin converting enzyme inhibition activity, and phenolic compounds of bamboo shoot extracts. LWT - Food Science and Technology, 43(4), 655–659.Google Scholar
  44. Parveen, I., Threadgill, M. D., Hauck, B., Donnison, I., & Winters, A. (2011). Isolation, identification and quantitation of hydroxycinnamic acid conjugates, potential platform chemicals, in the leaves and stems of Miscanthus x giganteus using LC-ESI-MSn. Phytochemistry, 72(18), 2376–2384.Google Scholar
  45. Peiró, S., Gordon, M. H., Blanco, M., Pérez-Llamas, F., Segovia, F., & Almajano, M. P. (2014). Modelling extraction of white tea polyphenols: The influence of temperature and ethanol concentration. Antioxidants, 3(4), 684–699.Google Scholar
  46. Prasad, K. N., Yang, E., Yi, C., Zhao, M. M., & Jiang, Y. M. (2009). Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innovative Food Science and Emerging Technologies, 10(2), 155–159.Google Scholar
  47. Qing, Q., Gao, X., Wang, P., Guo, Q., Xu, Z., & Wang, L. (2018). Dilute acid catalyzed fractionation and sugar production from bamboo shoot shell in γ-valerolactone/water medium. RSC Advances, 8(31), 17527–17534.Google Scholar
  48. Razak, M. F. B. A., Yong, P. K., Shah, Z. M., & Abdullah, L. C. (2012). The effects of varying solvent polarity on extraction yield of Orthosiphon Stamineus leaves. Journal of Applied Sciences, 12(11), 1207–1210.Google Scholar
  49. Şahin, S., & Samlı, R. (2013). Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics Sonochemistry, 20(1), 595–602.Google Scholar
  50. Sahraoui, N., Vian, M. A., El Maataoui, M., Boutekedjiret, C., & Chemat, F. (2011). Valorization of citrus by-products using microwave steam distillation (MSD). Innovative Food Science and Emerging Technologies, 12(2), 163–170.Google Scholar
  51. Sang, S., Lao, A., Wang, Y., Chin, C. K., Rosen, R. T., & Ho, C. T. (2002). Antifungal constituents from the seeds of Allium fistulosum L. Journal of Agricultural and Food Chemistry, 50(22), 6318–6321.Google Scholar
  52. Shi, J., Yu, J., Pohorly, J., Young, J. C., Bryan, M., & Wu, Y. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Journal of Food, Agriculture and Environment, 1(2), 42–47.Google Scholar
  53. Shin, J. S., Hong, Y., Lee, H. H., Ryu, B., Cho, Y. W., Kim, N. J., Jang, D. S., & Lee, K. T. (2015). Fulgidic acid isolated from the rhizomes of Cyperus rotundus suppresses LPS-induced iNOS, COX-2, TNF-α, and IL-6 expression by AP-1 inactivation in RAW264.7 macrophages. Biological & Pharmaceutical Bulletin, 38(7), 1081–1086.Google Scholar
  54. Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8), 2144–2155.Google Scholar
  55. Thouri, A., Chahdoura, H., Arem, A. E., Hichri, A. O., Hassin, R. B., & Achour, L. (2017). Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complementary and Alternative Medicine, 17, 248.Google Scholar
  56. Tsouko, E., Kachrimanidou, V., dos Santos, A. F., Lima, M. E. D. N. V., Papanikolaou, S., de Castro, A. M., Freire, D. M., & Koutinas, A. A. (2017). Valorization of by-Products from palm oil mills for the production of generic fermentation media for microbial oil synthesis. Applied Biochemistry and Biotechnology, 181(4), 1241–1256.Google Scholar
  57. Wang, T. M., Wang, R. F., Chen, H. B., Shang, M. Y., & Cai, S. Q. (2013a). Alkyl and phenolic glycosides from Saussurea stella. Fitoterapia, 88(7), 38–43.Google Scholar
  58. Wang, X., Wu, Y., Chen, G., Yue, W., Liang, Q., & Wu, Q. (2013b). Optimisation of ultrasound assisted extraction of phenolic compounds from Sparganii rhizoma with response surface methodology. Ultrasonics Sonochemistry, 20(3), 846–854.Google Scholar
  59. Weston, L. A., Burke, B. A., & Putnam, A. R. (1987). Isolation, characterization and activity of phytotoxic compounds from quackgrass [agropyron-repens (l) beauv]. Journal of Chemical Ecology, 13(3), 403–421.Google Scholar
  60. Wheelan, P., Zirrolli, J. A., & Murphy, R. C. (1993). Low-energy fast-atom-bombardment tandem mass-spectrometry of monohydroxy substituted unsaturated fatty-acids. Biological Mass Spectrometry, 22(8), 465–473.Google Scholar
  61. Ye, L. Y., Zhang, J. M., Zhao, J., & Tu, S. (2014). Liquefaction of bamboo shoot shell for the production of polyols. Bioresource Technology, 153(2), 147–153.Google Scholar
  62. Yu, N. F., Wu, N. L., Wang, Y., & Tu, Y. G. (2012). Study on extraction of xylan from bamboo shoot shell. China Food Additives, 6, 107–110 (in Chinese).Google Scholar
  63. Yue, T., Shao, D., Yuan, Y., Wang, Z., & Qiang, C. (2012). Ultrasound-assisted extraction, HPLC analysis, and antioxidant activity of polyphenols from unripe apple. Journal of Separation Science, 35(16), 2138–2145.Google Scholar
  64. Zhang, Y., Bao, B. L., Lu, B. Y., Ren, Y. P., Tie, X. W., & Zhang, Y. (2005). Determination of flavone C-glucosides in antioxidant of bamboo leaves (AOB) fortified foods by reversed-phase high-performance liquid chromatography with ultraviolet diode array detection. Journal of Chromatography A, 1065(2), 177–185.Google Scholar
  65. Zhang, Y., Chen, J., Zhang, X., Xiaoqin Wu, A., & Zhang, Y. (2007). Addition of antioxidant of bamboo leaves (AOB) effectively reduces acrylamide formation in potato crisps and french fries. Journal of Agricultural and Food Chemistry, 55(2), 523–528.Google Scholar
  66. Zhang, Y., Kong, L., Yin, C., Jiang, D., Jiang, J., He, J., & Xiao, W. (2013). Extraction optimization by response surface methodology, purification and principal antioxidant metabolites of red pigments extracted from bayberry (Myrica rubra) pomace. LWT- Food Science and Technology, 51(1), 343–347.Google Scholar
  67. Zhang, Q. A., Shen, H., Fan, X. H., Shen, Y., Wang, X., & Song, Y. (2015a). Changes of gallic acid mediated by ultrasound in a model extraction solution. Ultrasonics Sonochemistry, 22, 149–154.Google Scholar
  68. Zhang, S., Zheng, B. D., Lin, M. L., & Zheng, Y. F. (2015b). Microwave-ultrasonic assisted extraction and antioxidant activity of polysaccharides from bamboo shoot shell. Food Science, 36(16), 72–76 (in Chinese).Google Scholar
  69. Zheng, Y., Zhang, S., Wang, Q., Lu, X., Lin, L., Tian, Y., Xiao, J., & Zheng, B. (2016). Characterization and hypoglycemic activity of a β-pyran polysaccharides from bamboo shoot (Leleba oldhami Nakal) shells. Carbohydrate Polymers, 144, 438–446.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lei Jiang
    • 1
    • 2
  • Tarun Belwal
    • 1
  • Hao Huang
    • 1
  • Zhiwei Ge
    • 1
  • Jarukitt Limwachiranon
    • 1
  • Yechao Zhao
    • 1
  • Li Li
    • 1
  • Guoping Ren
    • 3
  • Zisheng Luo
    • 1
    • 2
    Email author
  1. 1.College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food ProcessingZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Fuli Institute of Food ScienceZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Hangzhou Wanxiang PolytechnicHangzhouPeople’s Republic of China

Personalised recommendations