Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 10, pp 1659–1671 | Cite as

A Novel Electrochemical Biosensor Based on Hematite (α-Fe2O3) Flowerlike Nanostructures for Sensitive Determination of Formaldehyde Adulteration in Fruit Juices

  • Monika Kundu
  • Shiv Prasad
  • Prameela Krishnan
  • Sumana GajjalaEmail author
Original Paper
  • 65 Downloads

Abstract

High-performance electrochemical enzymatic biosensor based on flowerlike α-Fe2O3 nanostructures was successfully developed for the detection of potential food adulterant, formaldehyde (formalin). The biosensor was found to be highly sensitive (744.15 μA mg−1 Lcm−2) with linear range of detection (0.01–0.3 mg/L) and showed high shelf-life (9 weeks) and precision (0.73% RSD) with reasonably good reproducibility. The biosensor application in real sample analysis was successfully accomplished using cyclic voltammetry (CV) technique. The developed biosensor exhibited detection limits of 0.02 mg/L and 0.04 mg/L in extracted and commercial orange juice samples, respectively, while 0.03 mg/L in extracted mango juice and 0.05 mg/L in commercial mango juice were obtained. The obtained detection limits are well below the maximum daily dose reference set by Environmental Protection Agency (EPA), USA, for formaldehyde. Biosensor results were found in good agreement with those obtained with HPLC (p < 0.05) and highlight market acceptability with usefulness and effectiveness of the proposed method for food quality and safety evaluation.

Keywords

Cyclic voltammetry Formaldehyde adulteration Fruit juice Hematite nanostructure 

Notes

Acknowledgments

We are grateful to Director, CSIR-NPL, New Delhi, India for providing the necessary facilities for research. We are thankful to Mr. Jai Singh and Mr. Dinesh CSIR-NPL for SEM and TEM measurements, respectively. We sincerely thank Dr. R.K. Kotnala for interesting discussions. We thank Manoj Kumar Pandey and Hema Bhardwaj (CSIR-NPL) for providing scientific and technical help. The sponsorship support from ICAR-IARI, New Delhi, India is thankfully acknowledged.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11947_2019_2318_MOESM1_ESM.pdf (829 kb)
ESM 1 (PDF 828 kb)

References

  1. Act, M. F. (1983). Warta Kerajaan Malaysia. Kuala Lumpur: Ministry of Health Malaysia. 29.Google Scholar
  2. Alexandre, D. L., Melo, A. M. A., Furtado, R. F., Borges, M. F., Figueiredo, E. A. T., Biswas, A., Cheng, H. N., & Alves, C. R. (2018). A rapid and specific biosensor for Salmonella typhimurium detection in Milk. Food and Bioprocess Technology, 11(4), 748–756.CrossRefGoogle Scholar
  3. Ali, M. A., Srivastava, S., Pandey, M. K., Agrawal, V. V., John, R., & Malhotra, B. D. (2014). Protein-conjugated quantum dots Interface: Binding kinetics and label-free lipid detection. Analytical Chemistry, 86(3), 1710–1718.CrossRefGoogle Scholar
  4. Ali, M. A., Singh, C., Mondal, K., Srivastava, S., Sharma, A., & Malhotra, B. D. (2016). Mesoporous few-layer graphene platform for affinity biosensing application. ACS Applied Materials & Interfaces, 8(12), 7646–7656.CrossRefGoogle Scholar
  5. Andersen, D. N., Slothuus, T., & Larsen, P. B. (2014). Survey of formaldehyde-part of the LOUS review. Environmental project No 1618 (Vol. 1, pp. 82).Google Scholar
  6. Ayenimo, J. G., & Adeloju, S. B. (2017). Amperometric detection of glucose in fruit juices with polypyrrole-based biosensor with an integrated permselective layer for exclusion of interferences. Food Chemistry, 229, 127–135.CrossRefGoogle Scholar
  7. Azizi, S. N., Ghasemi, S., & Amiripour, F. (2016). Nickel/P nanozeolite modified electrode: a new sensor for the detection of formaldehyde. Sensors and Actuators B: Chemical, 227, 1–10.Google Scholar
  8. Balakrishnan, S. R., Hashim, U., Letchumanan, G. R., Kashif, M., Ruslinda, A. R., Liu, W. W., Veeradasan, P., Haarindra Prasad, R., Foo, K. L., & Poopalan, P. (2014). Development of highly sensitive polysilicon nanogap with APTES/GOx based lab-on-chip biosensor to determine low levels of salivary glucose. Sensors and Actuators A: Physical, 220, 101–111.CrossRefGoogle Scholar
  9. Bharath, G., & Ponpandian, N. (2015). Hydroxyapatite nanoparticles on dendritic α-Fe2O3 hierarchical architectures for a heterogeneous photocatalyst and adsorption of Pb (II) ions from industrial wastewater. RSC Advances, 5(103), 84685–84693.CrossRefGoogle Scholar
  10. Bhardwaj, H., Singh, C., Kumar Pandey, M., & Sumana, G. (2016). Star shaped zinc sulphide quantum dots self-assembled monolayers: Preparation and applications in food toxin detection. Sensors and Actuators B: Chemical, 231, 624–633.CrossRefGoogle Scholar
  11. Bhowmik, S., Begum, M., Hossain, M. A., Rahman, M., & Alam, A. K. M. N. (2017). Determination of formaldehyde in wet marketed fish by HPLC analysis: A negligible concern for fish and food safety in Bangladesh. The Egyptian Journal of Aquatic Research, 43(3), 245–248.CrossRefGoogle Scholar
  12. Cao, C.-Y., Qu, J., Yan, W.-S., Zhu, J.-F., Wu, Z.-Y., & Song, W.-G. (2012). Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism. Langmuir, 28(9), 4573–4579.Google Scholar
  13. Cesarino, I., Moraes, F. C., Lanza, M. R. V., & Machado, S. A. S. (2012). Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Food Chemistry, 135(3), 873–879.CrossRefGoogle Scholar
  14. Datta, K. J., Rathi, A. K., Kumar, P., Kaslik, J., Medrik, I., Ranc, V., Varma, R. S., Zboril, R., & Gawande, M. B. (2017). Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes. Scientific Reports, 7(1), 11585.CrossRefGoogle Scholar
  15. Dhyani, H., Ali, M. A., Pandey, M. K., Malhotra, B. D., & Sen, P. (2012). Electrophoretically deposited CdS quantum dots based electrode for biosensor application. Journal of Materials Chemistry, 22(11), 4970–4976.CrossRefGoogle Scholar
  16. European Commission. (2006). Directive 2006/52/EC of the European Parliament and of the council of 5 July 2006 amending directive 95/2/EC on food additives other than colours and sweeteners and directive 94/35/EC on sweeteners for use in foodstuffs. Official Journal of the European Union, 204, 10–22.Google Scholar
  17. Gumpu, M. B., Nesakumar, N., Sethuraman, S., Krishnan, U. M., & Rayappan, J. B. B. (2016). Determination of putrescine in tiger prawn using an amperometric biosensor based on immobilization of diamine oxidase onto ceria nanospheres. Food and Bioprocess Technology, 9(4), 717–724.CrossRefGoogle Scholar
  18. Han, R., Li, W., Pan, W., Zhu, M., Zhou, D., & Li, F.-s. (2014). 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Scientific Reports, 4.Google Scholar
  19. Hariani, P. L., Faizal, M., & Setiabudidaya, D. (2013). Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to remove procion dye. International Journal of Environmental Science and Development, 4(3), 336.Google Scholar
  20. Hidayat, M. A., Christiana, W., & Kuswandi, B. (2013). An Optical Fiber Formaldehyde Biosensor Based on a Modified Single Sol–Gel Film of Alcohol Oxidase and Chlorophenol Red in Flow System. Sensor Letters, 11(12), 2207–2214.Google Scholar
  21. Krzyczmonik, P., Socha, E., & Skrzypek, S. (2018). Electrochemical detection of glucose in beverage samples using poly (3, 4-ethylenedioxythiophene)-modified electrodes with immobilized glucose oxidase. Electrocatalysis, 9(3), 380–387.CrossRefGoogle Scholar
  22. Kundu, M., Bhardwaj, H., Pandey, M. K., Krishnan, P., Kotnala, R. K., & Sumana, G. (2019). Development of electrochemical biosensor based on CNT–Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice. Journal of Food Science and Technology, 1-12.Google Scholar
  23. Linalool, S. (2002). Initial assessment report for SIAM 14 (p. 180). Paris: OECD SIDS.Google Scholar
  24. Liteplo, R. G., Beauchamp, R., Chenier, R., & Meek, M. E. (2002). Concise international chemical assessment document 40: Formaldehyde (p. 81). Geneva: World Health Organization.Google Scholar
  25. Malaysian Food Act. (2004). Food act 1983 (Act 281) and regulations. Kuala Lumpur: International Law Book Services.Google Scholar
  26. Malvano, F., Albanese, D., Pilloton, R., Di Matteo, M., & Crescitelli, A. (2017). A new label-free Impedimetric affinity sensor based on Cholinesterases for detection of Organophosphorous and Carbamic pesticides in food samples: Impedimetric versus Amperometric detection. Food and Bioprocess Technology, 10(10), 1834–1843.CrossRefGoogle Scholar
  27. Marzuki, N. I., Bakar, F. A., Salleh, A. B., Heng, L. Y., Yusof, N. A., & Siddiquee, S. (2012). Development of electrochemical biosensor for formaldehyde determination based on immobilized enzyme. International Journal of Electrochemical Science, 7, 6070–6083.Google Scholar
  28. Nachaki, E. O., Ndangili, P. M., Naumih, N. M., & Masika, E. (2018). Nickel‐Palladium‐Based Electrochemical Sensor for Quantitative Detection of Formaldehyde. Chemistry Select, 3(2), 384–392.Google Scholar
  29. Nithya, M. (2015). Electrochemical sensing of ascorbic acid on ZnO-decorated reduced graphene oxide electrode. Journal of Biosensors & Bioelectronics, 6(1), 1.Google Scholar
  30. Noor Aini, B., Siddiquee, S., & Ampon, K. (2016). Development of formaldehyde biosensor for determination of formalin in fish samples; Malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol). Biosensors, 6(3), 32.CrossRefGoogle Scholar
  31. Noordiana, N., Fatimah, A. B., & Farhana, Y. C. B. (2011). Formaldehyde content and quality characteristics of selected fish and seafood from wet markets. International Food Research Journal, 18(1).Google Scholar
  32. Ozoner, S. K., Erhan, E., Yilmaz, F., Ergenekon, P., & Anil, I. (2013). Electrochemical biosensor for detection of formaldehyde in rain water. Journal of Chemical Technology & Biotechnology, 88(4), 727–732.CrossRefGoogle Scholar
  33. Palchoudhury, S., Xu, Y., Rushdi, A., Holler, R. A., & Bao, Y. (2012). Controlled synthesis of iron oxide nanoplates and nanoflowers. Chemical Communications, 48(85), 10499–10501.CrossRefGoogle Scholar
  34. Park, M. K., Weerakoon, K. A., Oh, J. H., & Chin, B. A. (2013). The analytical comparison of phage-based magnetoelastic biosensor with TaqMan-based quantitative PCR method to detect Salmonella typhimurium on cantaloupes. Food Control, 33(2), 330–336.CrossRefGoogle Scholar
  35. Qin, J., Chao, K., Kim, M. S., & Cho, B.-K. (2016). Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients. Food and Bioprocess Technology, 9(1), 113–123.  https://doi.org/10.1007/s11947-015-1605-x.CrossRefGoogle Scholar
  36. Ratanakorn, S. (2015). Food regulations and enforcement in Thailand. Elsevier.Google Scholar
  37. Razzino, C. A., Sgobbi, L. F., Canevari, T. C., Cancino, J., & Machado, S. A. S. (2015). Sensitive determination of carbendazim in orange juice by electrode modified with hybrid material. Food Chemistry, 170, 360–365.CrossRefGoogle Scholar
  38. Regulation, M. F. (1985). Malaysian law on food and drugs.63–68Google Scholar
  39. Rufus, A., Sreeju, N., & Philip, D. (2016). Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Advances, 6(96), 94206–94217.CrossRefGoogle Scholar
  40. Sezginturk, M. K., & Dinckaya, E. (2008). Development of a biosensor for controlling of Thiourea in fruit juices. Food and Bioprocess Technology, 3(1), 128–134.  https://doi.org/10.1007/s11947-008-0076-8.CrossRefGoogle Scholar
  41. Sherman, D. M., & Waite, T. D. (1985). Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70(11–12), 1262–1269.Google Scholar
  42. Singh, C., Srivastava, S., Ali, M. A., Gupta, T. K., Sumana, G., Srivastava, A., & Malhotra, B. D. (2013). Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical, 185, 258–264.CrossRefGoogle Scholar
  43. Soldatkina, O. V., Soldatkin, O. O., Kasap, B. O., Kucherenko, D. Y., Kucherenko, I. S., Kurc, B. A., & Dzyadevych, S. V. (2017). A novel Amperometric glutamate biosensor based on glutamate oxidase adsorbed on Silicalite. Nanoscale Research Letters, 12(1), 260.CrossRefGoogle Scholar
  44. United States Environmental Protection Agency (EPA) (2010). Toxicological review of formaldehyde-inhalation assessment. U.S. Environmental Protection Agency.Google Scholar
  45. Wang, S., Cui, X., & Fang, G. (2007). Rapid determination of formaldehyde and sulfur dioxide in food products and Chinese herbals. Food Chemistry, 103(4), 1487–1493.CrossRefGoogle Scholar
  46. Wang, M., Jiang, S., Chen, Y., Chen, X., Zhao, L., Zhang, J., et al. (2013). Formaldehyde biosensor with formaldehyde dehydrogenase adsorped on carbon electrode modified with polypyrrole and carbon nanotube. Engineering, 4(10), 135.CrossRefGoogle Scholar
  47. World Health Organization (2015). WHO estimates of the global burden of foodborne diseases. Foodborne disease burden epidemiology reference group 2007–2015.Google Scholar
  48. Xu, W., Zhang, W., Zhang, X., Dong, T., Zeng, H., & Fan, Q. (2017). Association between formaldehyde exposure and miscarriage in Chinese women. Medicine, 96(26).Google Scholar
  49. Zailina, H., & Fatimah, A. B. (2013). Health risk assessment of adults consuming commercial fish contaminated with formaldehyde. Food and Public Health, 3(1), 52–58.Google Scholar
  50. Zeng, S., Tang, K., Li, T., Liang, Z., Wang, D., Wang, Y., Qi, Y., & Zhou, W. (2008). Facile route for the fabrication of porous hematite nanoflowers: Its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. The Journal of Physical Chemistry C, 112(13), 4836–4843.CrossRefGoogle Scholar
  51. Zhou, Z. L., Kang, T. F., Zhang, Y., & Cheng, S. Y. (2009). Electrochemical sensor for formaldehyde based on Pt–Pd nanoparticles and a Nafion–modified glassy carbon electrode. Microchimica Acta, 164(1–2), 133–138.Google Scholar
  52. Zhu, X., Liu, M., Liu, Y., Chen, R., Nie, Z., Li, J., & Yao, S. (2016). Carbon-coated hollow mesoporous FeP microcubes: An efficient and stable electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 4(23), 8974–8977.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CSIR-National Physical LaboratoryDr. K.S. Krishnan MargNew DelhiIndia
  2. 2.Academy of Scientific and Innovative Research(AcSIR)GhaziabadIndia
  3. 3.Division of Agricultural PhysicsICAR-Indian Agricultural Research InstituteNew DelhiIndia
  4. 4.Centre for Environmental Science and Climate Resilient AgricultureIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations