Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 7, pp 1197–1204 | Cite as

Ethanol Precipitation of Mannooligosaccharides from Subcritical Water-Treated Coconut Meal Hydrolysate

  • Khwanjai Klinchongkon
  • Thapanee Bunyakiat
  • Pramote KhuwijitjaruEmail author
  • Shuji Adachi
Original Paper
  • 116 Downloads

Abstract

Subcritical water hydrolysis is an effective method for producing mannooligosaccharides from coconut meal, which is a by-product from coconut milk processing. In this study, the purification process to obtain mannooligosaccharides from coconut meal hydrolysate was investigated. The effects of adsorbent (activated carbon and bentonite), concentration (1–10% w/v), and adsorption time (5–60 min) were studied for impurities removal. The activated carbon showed much higher efficiency for impurities removal. Mannooligosaccharides were precipitated using ethanol at different concentrations (0–90% v/v) and initial carbohydrate contents (50, 100, and 200 g/L). The results showed that the ethanol concentration at 90% v/v and initial carbohydrate content of 200 g/L gave the highest recovery of saccharides (31 g/L). The obtained precipitate contained 9.7, 22.6, 12.9, 19.4, 19.4, and 16.1% w/w of saccharides with 1 to 6 degree of polymerization, respectively.

Keywords

Mannooligosaccharide recovery Oligosaccharide purification Cocos nucifera L. Subcritical water treatment Subcritical water hydrolysis 

Notes

Funding information

This research was partly funded by a grant from Silpakorn University Research and development Institute [SURDI 53/02/03].

References

  1. Albert, I., Víctor, F., Salvador, G., & Alfonso, G. (2012). Discoloration kinetics of clarified apple juice treated with Lewatit® S 4528 adsorbent resin during processing. Food and Bioprocess Technology, 5(6), 2132–2139.  https://doi.org/10.1007/s11947-011-0649-9.
  2. Altmann, K., Clawin-Rädecker, I., Hoffmann, W., & Lorenzen, P. C. (2016). Nanofiltration enrichment of milk oligosaccharides (MOS) in relation to process parameters. Food and Bioprocess Technology, 9(11), 1924–1936.  https://doi.org/10.1007/s11947-016-1763-5.CrossRefGoogle Scholar
  3. AOAC. (1990). Official methods of analysis of the AOAC (15th ed.). Arlington: Association of Official Analytical Chemists.Google Scholar
  4. AOAC. (2000). Official methods of analysis of AOAC International (17th ed.). Arlington: AOAC International.Google Scholar
  5. Asano, I., Hamaguchi, K., Fujii, S., & Iino, H. (2003). In vitrodigestibility and fermentation of mannooligosaccharides from coffee mannan. Food Science and Technology Research, 9(1), 62–66.  https://doi.org/10.3136/fstr.9.62.
  6. Baldassarre, S., Babbar, N., Van Roy, S., Dejonghe, W., Maesen, M., Sforza, S., et al. (2018). Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chemistry, 267, 101–110.  https://doi.org/10.1016/j.foodchem.2017.10.055.CrossRefGoogle Scholar
  7. Balto, A. S., Lapis, T. J., Silver, R. K., Ferreira, A. J., Beaudry, C. M., Lim, J., & Penner, M. H. (2016). On the use of differential solubility in aqueous ethanol solutions to narrow the DP range of food-grade starch hydrolysis products. Food Chemistry, 197(Part A, 872–880.  https://doi.org/10.1016/j.foodchem.2015.10.120.CrossRefGoogle Scholar
  8. Bunyakiat, T., & Khuwijitjaru, P. (2016). Decolorization of hydrolysate of coconut meal using activated carbon after subcritical water treatment. Food and Applied Bioscience Journal, 4(3), 151–160.Google Scholar
  9. Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gı́rio, F. M. (2005). Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochemistry, 40(3–4), 1215–1223.  https://doi.org/10.1016/j.procbio.2004.04.015.CrossRefGoogle Scholar
  10. Gullón, P., Gullón, B., González-Munñoz, M. J., Alonso, J. L., & Parajó, J. C. (2014). Production and bioactivity of oligosaccharides from biomass hemicelluloses. In F. J. Moreno & M. L. Sanz (Eds.), Food oligosaccharides: production, analysis and bioactivity (pp. 88–106). Oxford: Wiley.CrossRefGoogle Scholar
  11. Gullόn, B., Gόmez, B., Martínez-Sabajanes, M., Yáñez, R., Parajό, J. C., & Alonso, J. L. (2013). Pectic oligosaccharides: Manufacture and functional properties. Trends in Food Science & Technology, 30(2), 153–161.  https://doi.org/10.1016/j.tifs.2013.01.006.CrossRefGoogle Scholar
  12. Holck, J., Hjernø, K., Lorentzen, A., Vigsnæs, L. K., Hemmingsen, L., Licht, T. R., Mikkelsen, J. D., & Meyer, A. S. (2011). Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation. Process Biochemistry, 46(5), 1039–1049.  https://doi.org/10.1016/j.procbio.2011.01.013.CrossRefGoogle Scholar
  13. Hossain, M. Z., Abe, J.-I., & Hizukuri, S. (1996). Multiple forms of β-mannanase from Bacillus sp. KK01. Enzyme and Microbial Technology, 18(2), 95–98.  https://doi.org/10.1016/0141-0229(95)00071-2.CrossRefGoogle Scholar
  14. Hu, X., Liu, C., Jin, Z., & Tian, Y. (2015). Fractionation of starch hydrolysate into dextrin fractions with low dispersity by gradient alcohol precipitation. Separation and Purification Technology, 151, 201–210.  https://doi.org/10.1016/j.seppur.2015.07.044.CrossRefGoogle Scholar
  15. Jin, F., Wang, Y., Zeng, X., Shen, Z., & Yao, G. (2014). Water under high temperature and pressure conditions and its applications to develop green technologies for biomass conversion. In F. Jin (Ed.), Application of hydrothermal reactions to biomass conversion (pp. 3–28). Berlin: Springer-Verlag Berlin Heidelberg.CrossRefGoogle Scholar
  16. Khuwijitjaru, P. (2016). Utilization of plant-based agricultural waste by subcritical water treatment. Japan Journal of Food Engineering, 17(2), 33–39.  https://doi.org/10.11301/jsfe.17.33.CrossRefGoogle Scholar
  17. Khuwijitjaru, P., Watsanit, K., & Adachi, S. (2012). Carbohydrate content and composition of product from subcritical water treatment of coconut meal. Journal of Industrial and Engineering Chemistry, 18(1), 225–229.  https://doi.org/10.1016/j.jiec.2011.11.010.CrossRefGoogle Scholar
  18. Khuwijitjaru, P., Pokpong, A., Klinchongkon, K., & Adachi, S. (2014). Production of oligosaccharides from coconut meal by subcritical water treatment. International Journal of Food Science and Technology, 49(8), 1946–1952.  https://doi.org/10.1111/ijfs.12524.CrossRefGoogle Scholar
  19. Khuwijitjaru, P., Koomyart, I., Kobayashi, T., & Adachi, S. (2017). Hydrolysis of konjac flour under subcritical water conditions. Chiang Mai Journal of Science, 44(3), 988–992.Google Scholar
  20. Klinchongkon, K., Khuwijitjaru, P., Wiboonsirikul, J., & Adachi, S. (2017). Extraction of oligosaccharides from passion fruit peel by subcritical water treatment. Journal of Food Process Engineering, 40(1), e12269.  https://doi.org/10.1111/jfpe.12269.CrossRefGoogle Scholar
  21. Koivula, E., Kallioinen, M., Sainio, T., Luque, S., & Mänttäri, M. (2012). Adsorption to improve filtration performance in treatment of wood-based hydrolysates. Procedia Engineering, 44, 1384–1386.  https://doi.org/10.1016/j.proeng.2012.08.796.CrossRefGoogle Scholar
  22. Kumari, B., Tiwari, B. K., Hossain, M. B., Brunton, N. P., & Rai, D. K. (2018). Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial by-products. Food and Bioprocess Technology, 11(2), 223–241.  https://doi.org/10.1007/s11947-017-1961-9.CrossRefGoogle Scholar
  23. Kusakabe, I., Takahashi, R., Murakami, K., Maekawa, A., & Suzuki, T. (1983). Preparation of crystalline β-1, 4-mannooligosaccharides from copra mannan by a mannanase from Streptomyces. Agricultural and Biological Chemistry, 47(10), 2391–2392.  https://doi.org/10.1271/bbb1961.47.2391.Google Scholar
  24. Kwon, K., Park, K. H., & Rhee, K. C. (1996). Fractionation and characterization of proteins from coconut (Cocos nucifera L.). Journal of Agricultural and Food Chemistry, 44(7), 1741–1745.  https://doi.org/10.1021/jf9504273.CrossRefGoogle Scholar
  25. Oliveira, D. L., Wilbey, R. A., Grandison, A. S., & Roseiro, L. B. (2014). Natural caprine whey oligosaccharides separated by membrane technology and profile evaluation by capillary electrophoresis. Food and Bioprocess Technology, 7(3), 915–920.  https://doi.org/10.1007/s11947-013-1153-1.CrossRefGoogle Scholar
  26. Powell, T., Bowra, S., & Cooper, H. J. (2016). Subcritical water processing of proteins: an alternative to enzymatic digestion? Analytical Chemistry, 88(12), 6425–6432.  https://doi.org/10.1021/acs.analchem.6b01013.CrossRefGoogle Scholar
  27. Rungruangsaphakun, J., & Keawsompong, S. (2018). Optimization of hydrolysis conditions for the mannooligosaccharides copra meal hydrolysate production. 3 Biotech, 8(3), 169.  https://doi.org/10.1007/s13205-018-1178-2.CrossRefGoogle Scholar
  28. Salak Asghari, F., & Yoshida, H. (2006). Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Industrial & Engineering Chemistry Research, 45(7), 2163–2173.  https://doi.org/10.1021/ie051088y.CrossRefGoogle Scholar
  29. Salinardi, T. C., Rubin, K. H., Black, R. M., & St-Onge, M. P. (2010). Coffee mannooligosaccharides, consumed as part of a free-living, weight-maintaining diet, increase the proportional reduction in body volume in overweight men. Journal of Nutrition, 140(11), 1943–1948.  https://doi.org/10.3945/jn.110.128207.CrossRefGoogle Scholar
  30. Sen, D., Gosling, A., Stevens, G. W., Bhattacharya, P. K., Barber, A. R., Kentish, S. E., Bhattacharjee, C., & Gras, S. L. (2011). Galactosyl oligosaccharide purification by ethanol precipitation. Food Chemistry, 128(3), 773–777.  https://doi.org/10.1016/j.foodchem.2011.03.076.CrossRefGoogle Scholar
  31. Sinclair, H. R., de Slegte, J., Gibson, G. R., & Rastall, R. A. (2009). Galactooligosaccharides (GOS) inhibitvibrio cholerae toxin binding to its GM1 receptor. Journal of Agricultural and Food Chemistry, 57(8), 3113–3119.  https://doi.org/10.1021/jf8034786.
  32. Sunphorka, S., Chavasiri, W., Oshima, Y., & Ngamprasertsith, S. (2012). Kinetic studies on rice bran protein hydrolysis in subcritical water. Journal of Supercritical Fluids, 65, 54–60.  https://doi.org/10.1016/j.supflu.2012.02.017.CrossRefGoogle Scholar
  33. Swennen, K., Courtin, C. M., Van der Bruggen, B., Vandecasteele, C., & Delcour, J. A. (2005). Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohydrate Polymers, 62(3), 283–292.  https://doi.org/10.1016/j.carbpol.2005.08.001.CrossRefGoogle Scholar
  34. Thongsook, T., & Chaijamrus, S. (2018). Optimization of enzymatic hydrolysis of copra meal: compositions and properties of the hydrolysate. Journal of Food Science and Technology, 55(9), 3721–3730.  https://doi.org/10.1007/s13197-018-3302-z.CrossRefGoogle Scholar
  35. Trinidad, T. P., Mallillin, A. C., Valdez, D. H., Loyola, A. S., Askali-Mercado, F. C., Castillo, J. C., Encabo, R. R., Masa, D. B., Maglaya, A. S., & Chua, M. T. (2006). Dietary fiber from coconut flour: a functional food. Innovative Food Science & Emerging Technologies, 7(4), 309–317.  https://doi.org/10.1016/j.ifset.2004.04.003.CrossRefGoogle Scholar
  36. Xu, J., Yue, R. Q., Liu, J., Ho, H. M., Yi, T., Chen, H. B., & Han, Q. B. (2014). Structural diversity requires individual optimization of ethanol concentration in polysaccharide precipitation. International Journal of Biological Macromolecules, 67, 205–209.  https://doi.org/10.1016/j.ijbiomac.2014.03.036.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Innovation in Food Technology, College of Health SciencesChristian University of ThailandNakhon PathomThailand
  2. 2.Department of Food Technology, Faculty of Engineering and Industrial TechnologySilpakorn UniversityNakhon PathomThailand
  3. 3.Department of Agriculture and Food Technology, Faculty of Bio-environmental ScienceKyoto University of Advanced ScienceKyotoJapan

Personalised recommendations