Improvement of Antioxidant Activity and Physical Stability of Chocolate Beverage Using Colloidal Cinnamon Nanoparticles

  • Dimas Rahadian Aji MuhammadEmail author
  • Carolina Gomez Gonzalez
  • Ali Sedaghat Doost
  • Davy Van de Walle
  • Paul Van der Meeren
  • Koen Dewettinck
Original Paper


In this study, the functionality of colloidal cinnamon nanoparticles in improving the antioxidant activity and suspension stability of a chocolate beverage formulated with two types of cocoa powder (natural and alkalised) was investigated. Cinnamon-loaded nanoparticles based on shellac and xanthan gum prepared using anti-solvent precipitation were incorporated in the chocolate beverage in multilevel proportions. The results showed that the addition of the nanoparticles improved the total phenolic content up to 40% and antioxidant activity up to 60% depending on the level of the nanoparticles added. Improvement of the physical stability of the chocolate beverage was observed regardless of the cocoa powder type. As the sedimentation index of the beverages made with alkalised and natural cocoa powders after 96 h was 5.7 and 85.7, respectively, the stabilisation effect of the nanoparticles seemed to be significantly influenced by the characteristics of the beverage raw material. The prevention of cocoa particle sedimentation was attributed to the colloidal network that originated from xanthan gum as shown by Cryo-SEM imaging or the increased viscosity of the mixture (i.e. from 2.4 to 27.7 mPa s at a shear rate of 50 s−1). Incorporation of the colloidal cinnamon nanoparticles had no significant effect on pH and a slight effect on the colour of the chocolate beverages. The formulated nanoparticles could be a promising complement to “ready-to-drink” products to enrich the bioactive content and prolong suspension stability.


Chocolate beverage Cinnamon Antioxidant Hydrocolloids Nanoparticles 



We thank the Directorate General of Higher Education, Ministry of Research, Technology, and Higher Education, the Republic of Indonesia, for providing a doctoral scholarship for the first author (BPPLN No. 15.1/E4.4/2015). This work was also supported by Universitas Sebelas Maret through the PDD-UNS program. Hercules Foundation is acknowledged for its financial support in the acquisition of the Scanning Electron Microscope JEOL JSM-7100F equipped with cryo-transfer system Quorum PP3010T (grant number AUGE-09-029).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Albak, F., & Tekin, A. R. (2014). The effect of addition of ingredients on physical propertıes of dark chocolate during conching. Basic Research Journal of Food Science and Technology, 1(7), 51–59.Google Scholar
  2. Andres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-Raventos, R. M. (2008). Flavanol and flavonol contents of cocoa powder products: influence of the manufacturing process. Journal of Agricultural and Food Chemistry, 56(9), 3111–3117.CrossRefGoogle Scholar
  3. Belščak-Cvitanović, A., Komes, D., Benković, M., Karlović, S., Hečimović, I., Ježek, D., & Bauman, I. (2012). Innovative formulations of chocolates enriched with plant polyphenols from Rubus idaeus L. leaves and characterization of their physical, bioactive and sensory properties. Food Research International, 48(2), 820–830.CrossRefGoogle Scholar
  4. Belščak-Cvitanović, A., Komes, D., Durgo, K., Vojvodić, A., & Bušić, A. (2015). Nettle (Urtica dioica L.) extracts as functional ingredients for production of chocolates with improved bioactive composition and sensory properties. Journal of Food Science and Technology, 52(12), 7723–7734.CrossRefGoogle Scholar
  5. Benković, M., Belščak-Cvitanović, A., Komes, D., & Bauman, I. (2013). Physical properties of non-agglomerated cocoa drink powder mixtures containing various types of sugar and sweetener. Food and Bioprocess Technology, 6(4), 1044–1058.CrossRefGoogle Scholar
  6. Budryn, G., Zaczyńska, D., & Rachwał-Rosiak, D. (2016). Changes of free and nanoencapsulated hydroxycinnamic acids from green coffee added to different food products during processing and in vitro enzymatic digestion. Food Research International, 89, 1004–1014.CrossRefGoogle Scholar
  7. Byun, Y., Ward, A., & Whiteside, S. (2012). Formation and characterization of shellac-hydroxypropyl methylcellulose composite films. Food Hydrocolloids, 27(2), 364–370.CrossRefGoogle Scholar
  8. Carrillo, L. C., Londoño-Londoño, J., & Gil, A. (2014). Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Research International, 60, 273–280.CrossRefGoogle Scholar
  9. Casas, J. A., Santos, V. E., & Garcıa-Ochoa, F. (2000). Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme and Microbial Technology, 26(2-4), 282–291.CrossRefGoogle Scholar
  10. Cidell, J. L., & Alberts, H. C. (2006). Constructing quality: the multinational histories of chocolate. Geoforum, 37(6), 999–1007.CrossRefGoogle Scholar
  11. Dean, L. L., Klevorn, C. M., & Hess, B. J. (2016). Minimizing the negative flavor attributes and evaluating consumer acceptance of chocolate fortified with peanut skin extracts. Journal of Food Science, 81(11), S2824–S2830.CrossRefGoogle Scholar
  12. Di Mattia, C. D., Sacchetti, G., Mastrocola, D., & Serafini, M. (2017). From cocoa to chocolate: the impact of processing on in vitro antioxidant activity and the effects of chocolate on antioxidant markers in vivo. Frontiers in Immunology, 8, 1207.CrossRefGoogle Scholar
  13. Dogan, M., Toker, O. S., & Goksel, M. (2011). Rheological behaviour of instant hot chocolate beverage: part 1. Optimization of the effect of different starches and gums. Food Biophysics, 6(4), 512–518.CrossRefGoogle Scholar
  14. Dogan, M., Toker, O. S., Aktar, T., & Goksel, M. (2013). Optimization of gum combination in prebiotic instant hot chocolate beverage model system in terms of rheological aspect: mixture design approach. Food and Bioprocess and Technology, 6(3), 783–794.CrossRefGoogle Scholar
  15. Dogan, M., Aktar, T., Toker, O. S., & Tatlisu, N. B. (2015). Combination of the simple additive (saw) approach and mixture design to determine optimum cocoa combination of the hot chocolate beverage. International Journal of Food Properties, 18(8), 1677–1692.CrossRefGoogle Scholar
  16. Dogan, M., Aslan, D., Aktar, T., & Sarac, M. G. (2016). A methodology to evaluate the sensory properties of instant hot chocolate beverage with different fat contents: multi-criteria decision-making techniques approach. European Food Research and Technology, 242(6), 953–966.CrossRefGoogle Scholar
  17. Farag, Y., & Leopold, C. S. (2011). Development of shellac-coated sustained release pellet formulations. European Journal of Pharmaceutical Sciences, 42(4), 400–405.CrossRefGoogle Scholar
  18. Gültekin-Özgüven, M., Karadağ, A., Duman, Ş., Özkal, B., & Özçelik, B. (2016). Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chemistry, 201, 205–212.CrossRefGoogle Scholar
  19. Habibi, H., & Khosravi-Darani, K. (2017). Effective variables on production and structure of xanthan gum and its food applications: a review. Biocatalysis and Agricultural Biotechnology, 10, 130–140.CrossRefGoogle Scholar
  20. Jaeger, S. R., Axten, L. G., Wohlers, M. W., & Sun-Waterhouse, D. (2009). Polyphenol-rich beverages: insights from sensory and consumer science. Journal of the Science of Food and Agriculture, 89(14), 2356–2363.CrossRefGoogle Scholar
  21. Jeffrey, D. J., & Acrivos, A. (1976). The rheological properties of suspensions of rigid particles. AICHE Journal, 22(3), 417–432.CrossRefGoogle Scholar
  22. Joye, I. J., & McClements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, 19(5), 417–427.CrossRefGoogle Scholar
  23. Katzbauer, B. (1998). Properties and applications of xanthan gum. Polymer Degradation and Stability, 59(1–3), 81–84.CrossRefGoogle Scholar
  24. Lončarević, I., Pajin, B., Fišteš, A., Šaponjac, V. T., Petrović, J., Jovanović, P., Vulić, J., & Zarić, D. (2018). Enrichment of white chocolate with blackberry juice encapsulate: impact on physical properties, sensory characteristics and polyphenol content. LWT, 92, 458–464.CrossRefGoogle Scholar
  25. Mazor Jolić, S., Radojčić Redovniković, I., Marković, K., Ivanec Šipušić, Đ., & Delonga, K. (2011). Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. International Journal of Food Science & Technology, 46(9), 1793–1800.CrossRefGoogle Scholar
  26. Morais Ferreira, J. M., Azevedo, B. M., Luccas, V., & Bolini, H. M. A. (2016). Isosweetness concentrations of sucrose and high-intensity sweeteners and antioxidant activity in white chocolate with functional properties. International Journal of Food Science & Technology, 51(9), 2114–2122.CrossRefGoogle Scholar
  27. Mueller, S., Llewellin, E. W., & Mader, H. M. (2010). The rheology of suspensions of solid particles. Proceedings of the Royal Society A, 466, 1201–1228.CrossRefGoogle Scholar
  28. Muhammad, D. R. A., & Dewettinck, K. (2017). Cinnamon and its derivatives as potential ingredients in functional foods—a review. International Journal of Food Properties, 20(Sup2), 2237–2263.Google Scholar
  29. Muhammad, D. R. A., Praseptiangga, D., Van de Walle, D., & Dewettinck, K. (2017). Interaction between natural antioxidants derived from cinnamon and cocoa in binary and complex mixtures. Food Chemistry, 231, 356–364.CrossRefGoogle Scholar
  30. Muhammad, D. R. A., Saputro, A. D., Rottiers, H., Van de Walle, D., & Dewettinck, K. (2018). Physicochemical properties and antioxidant activities of chocolates enriched with engineered cinnamon nanoparticles. European Food Research and Technology, 244(7), 1185–1202.CrossRefGoogle Scholar
  31. Oracz, J., Zyzelewicz, D., & Nebesny, E. (2015). The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: a review. Critical Reviews in Food Science and Nutrition, 55(9), 1176–1192.CrossRefGoogle Scholar
  32. Outuki, P. M., de Francisco, L. M. B., Hoscheid, J., Bonifácio, K. L., Barbosa, D. S., & Cardoso, M. L. C. (2016). Development of Arabic and xanthan gum microparticles loaded with an extract of Eschweilera nana Miers leaves with antioxidant capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499, 103–112.CrossRefGoogle Scholar
  33. Patel, A. R., Remijn, C., Cabero, A. M., Heussen, P., ten Hoorn, J. W. M., & Velikov, K. P. (2013). Novel all-natural microcapsules from gelatin and shellac for biorelated applications. Advanced Functional Materials, 23(37), 4710–4718.CrossRefGoogle Scholar
  34. Payne, M. J., Hurst, W. J., Miller, K. B., Rank, C., & Stuart, D. A. (2010). Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. Journal of Agricultural and Food Chemistry, 58(19), 10518–10527.CrossRefGoogle Scholar
  35. Peters, H. P. F., Ravestein, P., van der Hijden, H. T. W. M., Boers, H. M., & Mela, D. J. (2011). Effect of carbohydrate digestibility on appetite and its relationship to postprandial blood glucose and insulin levels. European Journal of Clinical Nutrition, 65(1), 47–54.CrossRefGoogle Scholar
  36. Popov-Raljić, J. V., & Laličić-Petronijević, J. G. (2009). Sensory properties and color measurements of dietary chocolates with different compositions during storage for up to 360 days. Sensors, 9(3), 1996–2016.CrossRefGoogle Scholar
  37. Ribeiro-Santos, R., Andrade, M., Madella, D., Martinazzo, A. P., Moura, L. A. G., de Melo, N. R., & Sanches-Silva, A. (2017). Revisiting an ancient spice with medicinal purposes: cinnamon. Trends in Food Science & Technology, 62, 154–169.CrossRefGoogle Scholar
  38. Rivas, J. C. M., Dietze, M., Zahn, S., Schneider, Y., & Rohm, H. (2018). Diversity of sensory profiles and physicochemical characteristics of commercial hot chocolate drinks from cocoa powders and block chocolates. European Food Research and Technology, 244(8), 1407–1414.CrossRefGoogle Scholar
  39. Saputro, A. D., Van de Walle, D., Aidoo, R. P., Mensah, M. A., Delbaere, C., De Clercq, N., Van Durme, J., & Dewettinck, K. (2016). Quality attributes of dark chocolates formulated with palm sap-based sugar as nutritious and natural alternative sweetener. European Food Research and Technology, 243(2), 177–191.CrossRefGoogle Scholar
  40. Saputro, A. D., Van de Walle, D., Kadivar, S., Sintang, M. D. B., Van der Meeren, P., & Dewettinck, K. (2017). Investigating the rheological, microstructural and textural properties of chocolates sweetened with palm sap-based sugar by partial replacement. European Food Research and Technology, 243(10), 1729–1738.CrossRefGoogle Scholar
  41. Schinella, G., Mosca, S., Cienfuegos-Jovellanos, E., Pasamar, M. Á., Muguerza, B., Ramón, D., & Ríos, J. L. (2010). Antioxidant properties of polyphenol-rich cocoa products industrially processed. Food Research International, 43(6), 1614–1623.CrossRefGoogle Scholar
  42. Sedaghat Doost, A., Muhammad, D. R. A., Stevens, C. V., Dewettinck, K., & Van der Meeren, P. (2018). Fabrication and characterization of quercetin loaded almond gum-shellac nanoparticles prepared by antisolvent precipitation. Food Hydrocolloids, 83, 190–201.CrossRefGoogle Scholar
  43. Sedaghat Doost, A., Kassozi, V., Grootaert, C., Claeys, M., Dewettinck, K., Van Camp, J., & Van der Meeren, P. (2019). Self-assembly, functionality, and in-vitro properties of quercetin loaded nanoparticles based on shellac-almond gum biological macromolecules. International Journal of Biological Macromolecules, 129, 1024–1033.CrossRefGoogle Scholar
  44. Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. Journal of Functional Foods, 18, 820–897.CrossRefGoogle Scholar
  45. Sim, S. Y. J., Ng, J. W., Ng, W. K., Forde, C. G., & Henry, C. J. (2016). Plant polyphenols to enhance the nutritional and sensory properties of chocolates. Food Chemistry, 200, 46–54.CrossRefGoogle Scholar
  46. Stummer, S., Salar-Behzadi, S., Unger, F. M., Oelzant, S., Penning, M., & Viernstein, H. (2010). Application of shellac for the development of probiotic formulations. Food Research International, 43(5), 1312–1320.CrossRefGoogle Scholar
  47. Toker, Ö., Dogan, M., & Göksel, M. (2012). Prediction of rheological parameters of model instant hot chocolate beverage by adaptive neuro fuzzy inference system. Milchwissenschaft, 67(1), 22–25.Google Scholar
  48. Toker, O. S., Dogan, M., Canıyılmaz, E., Ersöz, N. B., & Kaya, Y. (2013). The effects of different gums and their interactions on the rheological properties of a dairy dessert: a mixture design approach. Food and Bioprocess Technology, 6(4), 896–908.CrossRefGoogle Scholar
  49. Udayaprakash, N. K., Ranjithkumar, M., Deepa, S., Sripriya, N., Al-Arfaj, A. A., & Bhuvaneswari, S. (2015). Antioxidant, free radical scavenging and GC–MS composition of Cinnamomum iners Reinw. ex Blume. Industrial Crops and Products, 69, 175–179.CrossRefGoogle Scholar
  50. Wollgast, J., & Anklam, E. (2000). Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33(6), 423–447.CrossRefGoogle Scholar
  51. Yaginuma, Y., & Kijima, T. (2006). Effects of microcrystalline cellulose on suspension stability of cocoa beverage. Journal of Dispersion Science and Technology, 27(7), 941–948.CrossRefGoogle Scholar
  52. Zyzelewicz, D., Nebesny, E., Motyl, I., & Libudzisz, Z. (2010). Effect of milk chocolate supplementation with lyophilised Lactobacillus cells on its attributes. Czech Journal of Food Sciences, 28(5), 392–406.CrossRefGoogle Scholar
  53. Żyżelewicz, D., Krysiak, W., Nebesny, E., & Budryn, G. (2014). Application of various methods for determination of the color of cocoa beans roasted under variable process parameters. European Food Research and Technology, 238(4), 549–563.CrossRefGoogle Scholar
  54. Żyżelewicz, D., Krysiak, W., Oracz, J., Sosnowska, D., Budryn, G., & Nebesny, E. (2016). The influence of the roasting process conditions on the polyphenol content in cocoa beans, nibs and chocolates. Food Research International, 89, 918–929.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Food Technology and Engineering, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.Department of Food Science and TechnologyUniversitas Sebelas MaretSurakartaIndonesia
  3. 3.Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations