Antioxidant Activities of Hydrolysates from Abalone Viscera Using Subcritical Water-Assisted Enzymatic Hydrolysis

  • Peishan Zheng
  • Gengxin Hao
  • Wuyin WengEmail author
  • Huifeng Ren
Original Paper


Antioxidant hydrolysates were prepared from abalone viscera using subcritical water (AVS)-assisted by enzymatic hydrolysis with papain (AVSE-P), bromelain (AVSE-B), neutral protease (AVSE-N), and flavourzyme (AVSE-F). The protein and carbohydrate contents reached 38.33% and 24.36%, respectively. When AVS was digested by any of the proteases, the protein content increased, but carbohydrate content decreased. The main amino acids of AVSEs included alanine, glycine, and aspartic acid. The IC50 values of ferric reducing antioxidant power, and 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)•+, N,N-Dimethyl-p-phenylenediamine dihydrochloride (DMPD)•+, and hydroxyl radical (OH) scavenging abilities of AVS were 2.93, 1.48, 1.61, 3.72, and 5.51 mg/mL, respectively, which decreased after enzymatic hydrolysis by any of the proteases. The DMPD•+ and OH scavenging abilities of AVSE-P and AVSE-B were higher than those of others, whereas the opposite was observed in lipid peroxidation inhibition efficiency, DPPH, and ABTS•+ scavenging abilities. Hence, antioxidant activities of AVS could be enhanced by enzymatic hydrolysis, but the influence depends on the type of protease. At the same time, results also suggest that the proposed approach can be used for treating abalone viscera, and the obtained antioxidant hydrolysates could be used in nutraceutical and pharmaceutical industries.


Abalone viscera Subcritical water extraction Enzymatic hydrolysis Proximate composition Antioxidant activities 


Funding Information

This work is sponsored by National Natural Science Fund (31571835), Special Scientific Research Fund of Marine Public Welfare (201405016), and Xiamen Science and Technology Project (3502Z20173032).


  1. Abdollahi, M., & Undeland, I. (2018). Structural, functional, and sensorial properties of protein isolate produced from salmon, cod, and herring by-products. Food and Bioprocess Technology, 11(9), 1733–1749.CrossRefGoogle Scholar
  2. Ahmed, R., & Chun, B. S. (2018). Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. Journal of Supercritical Fluids, 11, 1–9.Google Scholar
  3. Ahn, C. B., Lee, K. H., & Je, J. Y. (2010). Enzymatic production of bioactive protein hydrolysates from tuna liver: effects of enzymes and molecular weight on bioactivity. International Journal of Food Science and Technology, 45(3), 562–568.CrossRefGoogle Scholar
  4. AOAC. (2005). Official methods of analysis of International (18th ed.). Gaithersburg: MD: Association of Official Analytical Chemists International.Google Scholar
  5. Asghar, M. N., Khan, I. U., Arshad, M. N., & Sherin, L. (2007). Evaluation of antioxidant activity using an improved dmpd radical cation decolorization assay. Acta Chimica Slovenica, 54(2), 295–300.Google Scholar
  6. Bamdad, F., Wu, J., & Chen, L. (2011). Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. Journal of Cereal Science, 54(1), 20–28.CrossRefGoogle Scholar
  7. Chandrasekara, A., & Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry, 58(11), 6706–6714.CrossRefGoogle Scholar
  8. Chen, S., Tang, L., Su, W., Weng, W., Osako, K., & Tanaka, M. (2015). Separation and characterization of alpha-chain subunits from tilapia (Tilapia zillii) skin gelatin using ultrafiltration. Food Chemistry, 188, 350–356.CrossRefGoogle Scholar
  9. Chi, C. F., Wang, B., Wang, Y. M., Zhang, B., & Deng, S. G. (2015a). Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of Functional Foods, 12, 1–10.CrossRefGoogle Scholar
  10. Chi, C. F., Hu, F. Y., Wang, B., Ren, X. J., Deng, S. G., & Wu, C. W. (2015b). Purification and characterization of three antioxidant peptides from protein hydrolyzate of croceine croaker (Pseudosciaena crocea) muscle. Food Chemistry, 168, 662–667.CrossRefGoogle Scholar
  11. Dávalos, A., Miguel, M., Bartolomé, B., & Lopez-Fadiño, R. (2004). antioxidant activitybof peptidesvderived from egg white proteins by enzymatic hydrolysis. Journal of Food Protection, 67(9), 1939–1944.CrossRefGoogle Scholar
  12. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.CrossRefGoogle Scholar
  13. Gülçin, I. (2010). Antioxidant properties of resveratrol: a structure-activity insight. Innovative Food Science and Emerging Technologies, 11(1), 210–218.CrossRefGoogle Scholar
  14. Guo, P., Qi, Y., Zhu, C., & Wang, Q. (2015). Purification and identification of antioxidant peptides from Chinese cherry (Prunus pseudocerasus Lindl.) seeds. Journal of Functional Foods, 19, 394–403.CrossRefGoogle Scholar
  15. He, R., Girgih, A. T., Malomo, S. A., Ju, X., & Aluko, R. E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, 5(1), 219–227.CrossRefGoogle Scholar
  16. Je, J. Y., Qian, Z. J., Byun, H. G., & Kim, S. K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42(5), 840–846.CrossRefGoogle Scholar
  17. Je, J. Y., Park, S. Y., Hwang, J. Y., & Ahn, C. B. (2015). Amino acid composition and in vitro antioxidant and cytoprotective activity of abalone viscera hydrolysate. Journal of Functional Foods, 16, 94–103.CrossRefGoogle Scholar
  18. Jo, E. K., Heo, D. J., Kim, J. H., Lee, Y. H., Ju, Y. C., & Lee, S. C. (2013). The effects of subcritical water treatment on antioxidant activity of golden oyster mushroom. Food and Bioprocess Technology, 6(9), 2555–2561.CrossRefGoogle Scholar
  19. Khantaphant, S., Benjakul, S., & Kishimura, H. (2011). Antioxidative and ACE inhibitory activities of protein hydrolysates from the muscle of brownstripe red snapper prepared using pyloric caeca and commercial proteases. Process Biochemistry, 46(1), 318–327.CrossRefGoogle Scholar
  20. Klompong, V., Benjakul, S., Yachai, M., Visessanguan, W., Shahidi, F., & Hayes, K. D. (2009). Amino acid composition and antioxidative peptides from protein hydrolysates of yellow stripe trevally (Selaroides leptolepis). Journal of Food Science, 74(2), 126–133.CrossRefGoogle Scholar
  21. Kondo, F., Ohta, T., Iwai, T., Ido, A., Miura, C., & Miura, T. (2017). Effect of the squid viscera hydrolysate on growth performance and digestion in the red sea bream Pagrus major. Fish Physiology and Biochemistry, 43(3), 1–13.Google Scholar
  22. Li, X., Lin, J., Gao, Y., Han, W., & Chen, D. (2012). Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chemistry Central Journal, 6(1), 140–150.Google Scholar
  23. Liu, Y. R., Li, W. G., Chen, L. F., Xiao, B. K., Yang, J. Y., Zhang, C. G., Huang, R. Q., & Dong, J. X. (2014). ABTS+ scavenging potency of selected flavonols from Hypericum perforatum L. by HPLC-ESI/MS QQQ: reaction observation, adduct characterization and scavenging activity determination. Food Research International, 58, 47–58.CrossRefGoogle Scholar
  24. Ovissipour, M., Kenari, A. A., Motamedzadegan, A., & Nazari, R. M. (2012). Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (thunnus albacares). Food and Bioprocess Technology, 5(2), 696–705.CrossRefGoogle Scholar
  25. Pan, X., Zhao, Y. Q., Hu, F. Y., & Wang, B. (2016). Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Functional Foods, 25, 220–230.CrossRefGoogle Scholar
  26. Plaza, M., & Turner, C. (2015). Pressurized hot water extraction of bioactives. TRAC Trends in Analytical Chemistry, 71, 39–54.CrossRefGoogle Scholar
  27. Qu, W., Ma, H., Liu, B., He, R., Pan, Z., & Abano, E. E. (2013). Enzymolysis reaction kinetics and thermodynamics of defatted wheat germ protein with ultrasonic pretreatment. Ultrasonics Sonochemistry, 20(6), 1408–1413.CrossRefGoogle Scholar
  28. Rajapakse, N., Mendis, E., Byun, H. G., & Kim, S. K. (2005). Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. Journal of Nutritional Biochemistry, 16(9), 562–569.CrossRefGoogle Scholar
  29. Rodríguez-Nogales, J. M., Vila-Crespo, J., & Gómez, M. (2011). Development of a rapid method for the determination of the antioxidant capacity in cereal and legume milling products using the radical cation DMPD. Food Chemistry, 129(4), 1800–1805.CrossRefGoogle Scholar
  30. Rogalinski, T., Herrmann, S., & Brunner, G. (2005). Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. Journal of Supercritical Fluids, 36(1), 49–58.CrossRefGoogle Scholar
  31. Sathivel, S., Bechtel, P. J., Babbitt, J., Smiley, S., Crapo, C., Reppond, K. D., & Prinyawiwatkul, W. (2003). Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates. Journal of Food Science, 68(7), 2196–2200.CrossRefGoogle Scholar
  32. Sereewatthanawut, I., Prapintip, S., Watchiraruji, K., Goto, M., Sasaki, M., & Shotipruk, A. (2008). Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresource Technology, 99(3), 555–561.CrossRefGoogle Scholar
  33. Sila, A., & Bougatef, A. (2016). Antioxidant peptides from marine by-products: isolation, identification and application in food systems: a review. Journal of Functional Foods, 21, 10–26.CrossRefGoogle Scholar
  34. Soares, J. R., Dinis, T. C. P., Cunha, A. P., & Almeida, L. (1997). Antioxidant activities of some extracts of Thymus zygis. Free Radical Research, 26(5), 469–478.CrossRefGoogle Scholar
  35. Song, R., Ismail, M., Baroutian, S., & Farid, M. (2018). Effect of subcritical water on the extraction of bioactive compounds from carrot leaves. Food and Bioprocess Technology, 11(10), 1895–1903.CrossRefGoogle Scholar
  36. Suleria, H. A. R., Masci, P. P., Addepalli, R., Chen, W., Gobe, G. C., & Osborne, S. A. (2017). In vitro anti-thrombotic and anti-coagulant properties of blacklip abalone (Haliotis rubra) viscera hydrolysate. Analytical and Bioanalytical Chemistry, 409(17), 4195–4205.CrossRefGoogle Scholar
  37. Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342.CrossRefGoogle Scholar
  38. Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J., & Lv, J. (2015). Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods, 18, 1138–1146.CrossRefGoogle Scholar
  39. Viana, M. T., D’Abramo, L. R., Gonzalez, M. A., García-Suárez, J. V., Shimada, A., & Vásquez-Peláez, C. (2007). Energy and nutrient utilization of juvenile green abalone (Haliotis fulgens) during starvation. Aquaculture, 264(1-4), 323–329.CrossRefGoogle Scholar
  40. Wang, B., Li, L., Chi, C. F., Ma, J. H., Luo, H. Y., & Xu, Y. F. (2013). Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chemistry, 138(2-3), 1713–1719.CrossRefGoogle Scholar
  41. Wang, Q., Li, W., He, Y., Ren, D., Kow, F., Song, L., & Yu, X. (2014). Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chemistry, 145, 991–996.CrossRefGoogle Scholar
  42. Weng, W., Tang, L., Wang, B., Chen, J., Su, W., Osako, K., & Tanaka, M. (2014). Antioxidant properties of fractions isolated from blue shark (Prionace glauca) skin gelatin hydrolysates. Journal of Functional Foods, 11(C), 342–351.CrossRefGoogle Scholar
  43. Zhou, D. Y., Zhu, B. W., Qiao, L., Wu, H. T., Li, D. M., Yang, J. F., & Murata, Y. (2012). In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera. Food and Bioproducts Processing, 90(2), 148–154.CrossRefGoogle Scholar
  44. Zhu, L., Jie, C., Tang, X., & Xiong, Y. L. (2008). Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry, 56(8), 2714–2721.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food and Biological EngineeringJimei UniversityXiamenChina
  2. 2.Xiamen Key Laboratory of Marine Functional FoodXiamenChina
  3. 3.Department of Ocean SciencesTokyo University of Marine Science and TechnologyTokyoJapan

Personalised recommendations