Intensification of Low-Temperature Drying of Mushroom by Means of Power Ultrasound: Effects on Drying Kinetics and Quality Parameters

  • Francisca Vallespir
  • Laura Crescenzo
  • Óscar Rodríguez
  • Francesco Marra
  • Susana SimalEmail author
Original Paper


The aim of this study was to assess the effects of ultrasonic assistance on low-temperature drying of mushroom. For this purpose, mushroom caps slices drying kinetics at 5, 10, and 15 °C without and with ultrasound application (at 20.5 kW/m3) were analyzed, together with the dried product microstructure and some quality parameters (ergosterol and total polyphenol contents, antioxidant activity, color, hydration properties, and fat adsorption capacity). Ultrasound application promoted drying time reductions of 41% at 5 °C, 57% at 10 °C, and 66% at 15 °C, compared with drying without ultrasound. After drying at each temperature, mushroom microstructure presented remarkable tissue shrinkage. Moreover, when ultrasound was also applied, micro-channels were observed. When drying was carried out with ultrasound application, no significant (p ≥ 0.05) differences or significantly higher (p < 0.05) figures of quality parameters were observed, compared with drying without ultrasound application. Thus, mushroom drying process intensification was achieved by using ultrasound, particularly when drying at 15 °C since drying kinetics was enhanced and significantly (p < 0.05) smaller changes in all quality parameters were observed, compared with drying without ultrasound.


Mushroom Low-temperature drying Ultrasound Microstructure Quality 



Face area (m2)


Browning index


Effective water diffusion coefficient (m2/s)


Parameter in the effective diffusivity model (m2/s)


Activation energy (kJ/mol)


External mass transfer coefficient (kg water/m2s)


Length (m)


Number of experimental data


Mean relative error (%)


Universal gas constant (J/mol·K)


Standard deviation (sample)


Standard deviation (estimation)


Temperature (°C)


Thickness (m)


Time (h)


Sample volume (m3)


Percentage of explained variance (%)


Average moisture content (kg/kg d.m.)


Spatial coordinate (m)


Dry matter density (kg d.m./m3)


Relative humidity




drying air




equilibrium at the surface




Funding Information

The authors would like to acknowledge the financial support of the National Institute of Research and Agro-Food Technology (INIA) and co-financed with ERDF funds (RTA2015-00060-C04-03), the Balearic Government for the research project AAEE045/2017 co-financed with ERDF funds, and the Spanish Government (MINECO) for the BES-2013-064131 fellowship.


  1. AOAC. (2006). Moisture in dried fruits (16th ed.). Maryland: Association of Analytical Communities.Google Scholar
  2. Çakmak, R. Ş., Tekeoğlu, O., Bozkır, H., Ergün, A. R., & Baysal, T. (2016). Effects of electrical and sonication pretreatments on the drying rate and quality of mushrooms. LWT - Food Science and Technology, 69(Supplement C), 197–202.CrossRefGoogle Scholar
  3. Eim, V. S., Urrea, D., Rosselló, C., García-Pérez, J. V., Femenia, A., & Simal, S. (2013). Optimization of the drying process of carrot (Daucus carota v. Nantes) on the basis of quality criteria. Drying Technology, 31(8), 951–962.CrossRefGoogle Scholar
  4. Ekunseitan, O. F., Obadina, A. O., Sobukola, O. P., Omemu, A. M., Adegunwa, M. O., Kajihausa, O. E., Adebowale, A.-R. A., Sanni, S. A., Sanni, L. O., & Keith, T. (2017). Nutritional composition, functional and pasting properties of wheat, mushroom, and high quality cassava composite flour. Journal of Food Processing and Preservation, 41(5), 1–8.CrossRefGoogle Scholar
  5. Farokhian, F., Jafarpour, M., Goli, M., & Askari-Khorasgani, O. (2017). Quality preservation of air-dried sliced button mushroom (Agaricus bisporus) by lavender (Lavendula angustifolia mill.) essential oil. Journal of Food Process Engineering, 40(3), e12432.CrossRefGoogle Scholar
  6. Femenia, A., Lefebvre, A. C., Thebaudin, J. Y., Robertson, J., & Bourgeois, C. M. (1997). Physical and sensory properties of model foods supplemented with cauliflower fiber. Journal of Food Science, 62(4), 635–639.CrossRefGoogle Scholar
  7. Femenia, A., Sastre-Serrano, G., Simal, S., Garau, M. C., Eim, V. S., & Rosselló, C. (2009). Effects of air-drying temperature on the cell walls of kiwifruit processed at different stages of ripening. LWT - Food Science and Technology, 42(1), 106–112.CrossRefGoogle Scholar
  8. Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132–139.CrossRefGoogle Scholar
  9. Garau, M. C., Simal, S., Femenia, A., & Rosselló, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75(2), 288–295.CrossRefGoogle Scholar
  10. García-Pérez, J. V., Ozuna, C., Ortuño, C., Cárcel, J. A., & Mulet, A. (2011). Modeling ultrasonically assisted convective drying of eggplant. Drying Technology, 29(13), 1499–1509.CrossRefGoogle Scholar
  11. García-Pérez, J. V., Cárcel, J. A., Riera, E., Rosselló, C., & Mulet, A. (2012a). Intensification of low-temperature drying by using ultrasound. Drying Technology, 30(11–12), 1199–1208.CrossRefGoogle Scholar
  12. García-Pérez, J. V., Ortuño, C., Puig, A., Cárcel, J. A., & Perez-Munuera, I. (2012b). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2256–2265.CrossRefGoogle Scholar
  13. Giri, S. K., & Prasad, S. (2007). Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering, 78(2), 512–521.CrossRefGoogle Scholar
  14. González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P.-L. (2012). Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 60(48), 11850–11858.CrossRefGoogle Scholar
  15. Guan, W., Zhang, J., Yan, R., Shao, S., Zhou, T., Lei, J., & Wang, Z. (2016). Effects of UV-C treatment and cold storage on ergosterol and vitamin D2 contents in different parts of white and brown mushroom (Agaricus bisporus). Food Chemistry, 210(Supplement C), 129–134.CrossRefGoogle Scholar
  16. Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chemistry, 115(4), 1500–1508.CrossRefGoogle Scholar
  17. Iglesias, H. A., & Chirife, J. (1982). Handbook of food isotherms: water sorption parameters for food and food components. New York: Academic.Google Scholar
  18. Islam, M. N., Zhang, M., Adhikari, B., Xinfeng, C., & Xu, B.-G. (2014). The effect of ultrasound-assisted immersion freezing on selected physicochemical properties of mushrooms. International Journal of Refrigeration, 42(Supplement C), 121–133.CrossRefGoogle Scholar
  19. Islam, M. N., Zhang, M., Fang, Z., & Sun, J. (2015). Direct contact ultrasound assisted freezing of mushroom (Agaricus bisporus): growth and size distribution of ice crystals. International Journal of Refrigeration, 57(Supplement C), 46–53.CrossRefGoogle Scholar
  20. Lagnika, C., Zhang, M., & Mothibe, K. J. (2013). Effects of ultrasound and high pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biology and Technology, 82(Supplement C), 87–94.CrossRefGoogle Scholar
  21. Lombraña, J. I., Rodríguez, R., & Ruiz, U. (2010). Microwave-drying of sliced mushroom. Analysis of temperature control and pressure. Innovative Food Science & Emerging Technologies, 11(4), 652–660.CrossRefGoogle Scholar
  22. Malik, M. A., Sharma, H. K., & Saini, C. S. (2017). High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: effect on physicochemical and functional properties. Ultrasonics Sonochemistry, 39(Supplement C), 511–519.CrossRefGoogle Scholar
  23. Mihalcea, L. I., Bucur, F. C., Cantaragiu, A. M. M., Gurgu, L. C., Borda, D. D., & Iordachescu, G. S. (2016). Temperature influence on the Agaricus bisporus mushrooms dehydration process. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 17(4), 323–333.Google Scholar
  24. Moreno, C., Brines, C., Mulet, A., Rosselló, C., & Cárcel, J. A. (2017). Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Drying Technology, 35(8), 957–968.CrossRefGoogle Scholar
  25. Nölle, N., Argyropoulos, D., Müller, J. & Biesalski, H. K. (2017). Temperature stability of vitamin D2 and color changes during drying of UVB-treated mushrooms. Drying Technology, 36(3), 307–315.
  26. Ozuna, C., Cárcel, J. A., Walde, P. M., & Garcia-Perez, J. V. (2014). Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science & Emerging Technologies, 23(Supplement C), 146–155.CrossRefGoogle Scholar
  27. Paciulli, M., Ganino, T., Pellegrini, N., Rinaldi, M., Zaupa, M., Fabbri, A., & Chiavaro, E. (2015). Impact of the industrial freezing process on selected vegetables — Part I. Structure, texture and antioxidant capacity. Food Research International, 74, 329–337.CrossRefGoogle Scholar
  28. Palacios, I., Lozano, M., Moro, C., D’Arrigo, M., Rostagno, M. A., Martínez, J. A., García-Lafuente, A., Guillamón, E., & Villares, A. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128(3), 674–678.CrossRefGoogle Scholar
  29. Pei, F., Yang, W.-J., Shi, Y., Sun, Y., Mariga, A. M., Zhao, L.-Y., Fang, Y., Ma, N., An, X.-X., & Hu, Q.-H. (2014). Comparison of freeze-drying with three different combinations of drying methods and their influence on colour, texture, microstructure and nutrient retention of button mushroom (Agaricus bisporus) slices. Food and Bioprocess Technology, 7(3), 702–710.CrossRefGoogle Scholar
  30. Reay, D., Ramshaw, C., & Harvey, A. (2013). Process intensification: engineering for efficiency, sustainability and flexibility. Amsterdam: Elsevier Science.CrossRefGoogle Scholar
  31. Reis, F. S., Martins, A., Vasconcelos, M. H., Morales, P., & Ferreira, I. C. F. R. (2017). Functional foods based on extracts or compounds derived from mushrooms. Trends in Food Science & Technology, 66(Supplement C), 48–62.CrossRefGoogle Scholar
  32. Rodríguez, Ó., Eim, V. S., Simal, S., Femenia, A., & Rosselló, C. (2013). Validation of a difussion model using moisture profiles measured by means of TD-NMR in apples (Malus domestica). Food and Bioprocess Technology, 6(2), 542–552.CrossRefGoogle Scholar
  33. Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21–29.CrossRefGoogle Scholar
  34. Rodriguez, O., Eim, V., Rossello, C., Femenia, A., Carcel, J. A., & Simal, S. (2018). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture, 98(5), 1660–1673.CrossRefGoogle Scholar
  35. Salehi, F., Kashaninejad, M., & Jafarianlari, A. (2017). Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices. Heat and Mass Transfer, 53(5), 1751–1759.CrossRefGoogle Scholar
  36. Santacatalina, J., Rodríguez, O., Simal, S., Cárcel, J., Mulet, A., & García-Pérez, J. (2014). Ultrasonically enhanced low-temperature drying of apple: influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 138, 35–44.CrossRefGoogle Scholar
  37. Santacatalina, J. V., Contreras, M., Simal, S., Cárcel, J. A., & Garcia-Perez, J. V. (2016a). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28(Supplement C), 100–109.CrossRefGoogle Scholar
  38. Santacatalina, J. V., Guerrero, M. E., Garcia-Perez, J. V., Mulet, A., & Cárcel, J. A. (2016b). Ultrasonically assisted low-temperature drying of desalted codfish. LWT - Food Science and Technology, 65(Supplement C), 444–450.CrossRefGoogle Scholar
  39. Santacatalina, J. V., Soriano, J. R., Cárcel, J. A., & Garcia-Perez, J. V. (2016c). Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing, 100(Part A), 282–291.CrossRefGoogle Scholar
  40. Shao, S., Hernandez, M., Kramer, J. K. G., Rinker, D. L., & Tsao, R. (2010). Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. Journal of Agricultural and Food Chemistry, 58(22), 11616–11625.CrossRefGoogle Scholar
  41. Spanish Government. (2018). Fábrica Nacional de Moneda y Timbre-Real Casa de la Moneda. Available at Accessed 28/11/2018 2018.
  42. Urun, G. B., Yaman, Ü. R., & Köse, E. (2015). Determination of drying characteristics and quality properties of eggplant in different drying conditions. Italian Journal of Food Science, 27(4), 459–467.Google Scholar
  43. Vallespir, F., Rodriguez, O., Carcel, J. A., Rossello, C. & Simal, S. (2018). Ultrasound assisted low-temperature drying of kiwifruit: effects on drying kinetics, bioactive compounds and antioxidant activity. Journal of the Science of Food Agriculture.
  44. Wu, X., Guan, W., Yan, R., Lei, J., Xu, L., & Wang, Z. (2016). Effects of UV-C on antioxidant activity, total phenolics and main phenolic compounds of the melanin biosynthesis pathway in different tissues of button mushroom. Postharvest Biology and Technology, 118, 51–58.CrossRefGoogle Scholar
  45. Zhang, Z., Liu, Z., Liu, C., Li, D., Jiang, N., & Liu, C. (2016). Effects of ultrasound pretreatment on drying kinetics and quality parameters of button mushroom slices. Drying Technology, 34(15), 1791–1800.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
  2. 2.Dipartimento di Ingegneria IndustrialeUniversità degli Studi di SalernoSalernoItaly

Personalised recommendations