Advertisement

Purification of Polyphenols from Green Tea Leaves and Performance Prediction Using the Blend Hollow Fiber Ultrafiltration Membrane

  • Mrinmoy Mondal
  • Sirshendu DeEmail author
Original Paper
  • 64 Downloads

Abstract

Hollow fiber–based ultrafiltration is used as a tool to enhance purity of polyphenols and in particular epigallocatechin gallate (EGCG), from microfiltered green tea leaves. Polysulfone-polyvinylidene fluoride (PVDF) blend was used to prepare the hollow fibers and membrane M-3 having 6-wt% PVDF in polymer solution with 30-kDa molecular weight cut off, permeability 17.7 × 10−11 m/Pa s with an average pore radius 5.3 nm, was identified as the suitable one. Increase in PVDF in spinning solution made the membrane more porous. The higher cut off membrane suffered from acute pore blocking leading to low flux recovery ratio, high flux decline ratio, and relatively lower polyphenol and EGCG purity. A transport phenomena–based model was formulated to calculate the profiles of permeate flux and concentration of polyphenols in the permeate. The model parameters were evaluated by matching the calculated data with experimental results. Permeation results indicated that 138-kPa transmembrane pressure drop and 30-l/h cross flow rate were desirable operating conditions having high permeate flux 55 l/m2 h with polyphenol purity 88% and EGCG purity 81%.

Keywords

Ultrafiltration Polyphenol EGCG Tea leaves extract Modeling 

Nomenclature

a

parameter in the mass transfer coefficient k0, Eq. (6)

b

parameter in the mass transfer coefficient k0, Pa−1, Eq. (6)

A0

membrane surface area, m2

C1

concentration of HMW solutes, kg/m3

C1b

bulk concentration of HMW solutes, kg/m3

C2b

bulk concentration of polyphenol solutes, kg/m3

CF

feed concentration of solute, kg/m3

C1g

gel layer concentration of HMW solutes, kg/m3

CP

permeate concentration of solute, kg/m3

C2p

permeate concentration of polyphenol, kg/m3

C2p,avg

average permeate concentration of polyphenol, kg/m3

C2m

membrane surface concentration of polyphenol, kg/m3

d

inner diameter of the hollow fiber, m

D1

effective diffusivity of the HMW components in water, m2/s

D2

diffusivity of polyphenol, m2/s

H

gel layer thickness, m

J

permeate flux, m3/m2 s

J1

initial permeate flux, m3/m2 s

Js

steady state permeate flux, m3/m2 s

Jw

pure water flux, m3/m2 s

Jw1

pure water flux of the membrane before experiment, m3/m2 s

Jw2

pure water flux of the membrane after experiment, m3/m2 s

k0

modified mass transfer coefficient of HMW components, m/s, Eq. (6)

k1

mass transfer coefficient of HMW components, m/s

k2

mass transfer coefficient of polyphenol component, m/s

Lp

permeability, m/Pa s

M2b

molecular weight of polyphenol, g/mol

Q

volumetric flow rate, m3/s

R

gas constant, J/mol K

R1

solute rejection, %

Re

Reynolds no., (ρu0d/μ)

Rg

gel layer resistance, m−1

Rm

membrane hydraulic resistance, m−1

rm

average pore radius of the membrane, m

Rr2

real retention of polyphenol

S0

sum of square of errors in Eq. (15)

S1

sum of square of errors in Eq. (16)

Sc

Schmidt number (μ/ρD)

Sh

Sherwood number (kd/D), Eq. (5)

t

time, s−1

T

temperature, K

u0

cross flow velocity inside a fiber, m/s

y

dimension normal to the membrane surface, m

Greek Symbols

α

specific gel layer resistance, m/kg

β

gel layer characteristic parameter, m−2

δ

mass transfer boundary layer thickness, m

ΔP

transmembrane pressure, Pa

Δπ

osmotic pressure difference, Pa

Δt

sampling time, s

εg

gel porosity

γg

partition coefficient

μ

viscosity of the permeating solution, Pa s

μb

viscosity of the bulk solution, Pa s

πm

osmotic pressure of the solution at the membrane surface, Pa

πp

osmotic pressure of the solution at the permeate side, Pa

ρ

density of solution, kg/m3

ρg

gel layer density, kg/m3

Abbreviation

AFM

atomic force microscopy

CFR

cross flow rate

BSA

bovine serum albumin

DMF

dimethylformamide

EC

epicatechin

EGC

epigallocatechin

ECG

epicatechin gallate

EGCG

epigallocatechin gallate

FDR

flux decline ratio

FRR

flux recovery ratio

GAE

gallic acid equivalent

GCG

gallocatechin gallate

HPLC

high-pressure liquid chromatography

HMW

high molecular weight solute

LMW

low molecular weight solute

MWCO

molecular weight cut off of the membrane, g/mol

MF

microfiltration

PSF

polysulfone

PVDF

polyvinylidene fluoride

SEM

scanning electron microscopy

TMP

transmembrane pressure

TS

total solid

UF

ultrafiltration

Notes

Funding Information

This work is financially supported by a grant from the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India, Mumbai, under the scheme no. 2012/21/03-BRNS, Dt. 25-07-2012. Any opinions, findings, and conclusions expressed in this paper are those of the authors and do not necessarily reflect the views of BRNS.

Supplementary material

11947_2019_2262_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 33 kb)

References

  1. Anesini, C., Ferraro, G. E., & Filip, R. (2008). Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. Journal of Agricultural and Food Chemistry, 56(19), 9225–9229.  https://doi.org/10.1021/jf8022782.Google Scholar
  2. Argyle, I. S., & Bird, M. R. (2015). Microfiltration of high concentration black tea streams for haze removal using polymeric membranes. Desalination and Water Treatment, 53(6), 1516–1531.  https://doi.org/10.1080/19443994.2014.953401.Google Scholar
  3. Banerjee, S., & Chatterjee, J. (2015). Efficient extraction strategies of tea (Camellia sinensis) biomolecules. Journal of Food Science and Technology, 52(6), 3158–3168.  https://doi.org/10.1007/s13197-014-1487-3.Google Scholar
  4. Blatt, W. F., Dravid, A., Michaels, A. S., & Nelsen, L. (1970). Solute polarization and cake formation in membrane ultrafiltration: causes, consequences, and control techniques. In J. E. Flinn (Ed.), Membrane Science and Technology. New York: Plenum Press.Google Scholar
  5. Byrd, R. H., Gilbert, J. C., & Nocedal, J. (2000). A trust region method based on interior point techniques for nonlinear programming. Mathematical Programming, 89(1), 149–185.  https://doi.org/10.1007/PL00011391.Google Scholar
  6. Chandini, S. K., Rao, L. J., & Subramanian, R. (2013). Membrane clarification of black tea extracts. Food and Bioprocess Technology, 6(8), 1926–1943.  https://doi.org/10.1007/s11947-012-0847-0.Google Scholar
  7. Dalluge, J. J., & Nelson, B. C. (2000). Determination of tea catechins. Journal of Chromatography A, 881(1–2), 411–424.  https://doi.org/10.1016/S0021-9673(00)00062-5.Google Scholar
  8. De, S., & Bhattacharya, P. K. (1997). Modeling of ultrafiltration process for a two-component aqueous solution of low and high (gel-forming) molecular weight solutes. Journal of Membrane Science, 136(1–2), 57–69.  https://doi.org/10.1016/S0376-7388(97)00177-4.Google Scholar
  9. Evans, P. J., & Bird, M. R. (2006). Solute-membrane fouling interactions during the ultrafiltration of black tea liquor. Food and Bioproducts Processing, 84(4), 292–301.  https://doi.org/10.1205/fbp06030.Google Scholar
  10. Evans, P. J., Bird, M. R., Pihlajamäki, A., & Nyström, M. (2008). The influence of hydrophobicity, roughness and charge upon ultrafiltration membranes for black tea liquor clarification. Journal of Membrane Science, 313(1–2), 250–262.  https://doi.org/10.1016/j.memsci.2008.01.010.Google Scholar
  11. Gekas, V., & Hallström, B. (1987). Mass transfer in the membrane concentration polarization layer under turbulent cross flow. Journal of Membrane Science, 30(2), 153–170.  https://doi.org/10.1016/S0376-7388(00)81349-6.Google Scholar
  12. Han, G., Zhang, S., Li, X., & Chung, T.-S. (2013). High performance thin film composite pressure retarded osmosis (PRO) membranes for renewable salinity-gradient energy generation. Journal of Membrane Science, 440, 108–121.  https://doi.org/10.1016/j.memsci.2013.04.001.Google Scholar
  13. Idris, A., Mat Zain, N., & Noordin, M. Y. (2007). Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination, 207(1–3), 324–339.  https://doi.org/10.1016/j.desal.2006.08.008.Google Scholar
  14. Johnston, S. T., & Deen, W. M. (1999). Hindered convection of proteins in agarose gels. Journal of Membrane Science, 153(2), 271–279.  https://doi.org/10.1016/S0376-7388(98)00260-9.Google Scholar
  15. Kawakatsu, T., Kobayashi, T., Sano, Y., & Nakajima, M. (1995). Clarification of green tea extract by microfiltration and ultrafiltration. Bioscience, Biotechnology, and Biochemistry, 59(6), 1016–1020.  https://doi.org/10.1271/bbb.59.1016.Google Scholar
  16. Khokhar, S., & Magnusdottir, S. G. M. (2002). Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. Journal of Agricultural and Food Chemistry, 50(3), 565–570.  https://doi.org/10.1021/jf010153l.Google Scholar
  17. Kumar, A., Thakur, B. K., & De, S. (2012). Selective extraction of (−)epigallocatechin gallate from green tea leaves using two-stage infusion coupled with membrane separation. Food and Bioprocess Technology, 5(6), 2568–2577.  https://doi.org/10.1007/s11947-011-0580-0.Google Scholar
  18. Li, J., & Feng, Y. S. (1996). A study on extraction of tea polyphenols with supercritical carbon dioxide. Natural Product Research and Development, 8(3), 42–47.Google Scholar
  19. Lowry, H., Rosebrough, J. N., Lewis, A. F., & Randall, J. (1951). Protein measurement with the folin phenol reagent. Analytical Biochemistry, 193(1), 265–275.  https://doi.org/10.1016/0304-3894(92)87011-4.Google Scholar
  20. McCloskey, B. D., Park, H. B., Ju, H., Rowe, B. W., Miller, D. J., Chun, B. J., Kin, K., & Freeman, B. D. (2010). Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer, 51(15), 3472–3485.  https://doi.org/10.1016/j.polymer.2010.05.008.Google Scholar
  21. Mondal, M., & De, S. (2015). Characterization and antifouling properties of polyethylene glycol doped PAN–CAP blend membrane. RSC Advances, 5(49), 38948–38963.  https://doi.org/10.1039/C5RA02889B.Google Scholar
  22. Mondal, M., & De, S. (2016). Treatment of textile plant effluent by hollow fiber nanofiltration membrane and multi-component steady state modeling. Chemical Engineering Journal, 285, 304–318.  https://doi.org/10.1016/j.cej.2015.10.005.Google Scholar
  23. Mondal, M., Biswas, P. P., & De, S. (2016). Clarification and storage study of bottle gourd (Lagenaria siceraria) juice by hollow fiber ultrafiltration. Food and Bioproducts Processing, 100, 1–15.  https://doi.org/10.1016/j.fbp.2016.06.010.Google Scholar
  24. Pan, X., Niu, G., & Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification, 42(2), 129–133.  https://doi.org/10.1016/S0255-2701(02)00037-5.Google Scholar
  25. Quan, P. T., Van Hang, T., Ha, N. H., De, N. X., & Tuyen, T. N. (2006). Microwave-assisted extraction of polyphenols from fresh tea shoot. Science, Technology and Development, 9(8), 69–75 http://vnulib.edu.vn:8000/dspace/bitstream/123456789/1878/1/sedev0806-09.pdf.Google Scholar
  26. Ranganna, S. (2005). Handbook of analysis and quality control for fruit and vegetable products. New Delhi, India: Tata Mcgraw Hill.Google Scholar
  27. Rao, L., Hayat, K., Lv, Y., Karangwa, E., Xia, S., Jia, C., Zhong, F., & Zhang, X. (2011). Effect of ultrafiltration and fining adsorbents on the clarification of green tea. Journal of Food Engineering, 102(4), 321–326.  https://doi.org/10.1016/j.jfoodeng.2010.09.007.Google Scholar
  28. Reddy, A. V., Mohan, D., Bhattacharya, A., Shah, V., & Ghosh, P. (2003). Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer. Journal of Membrane Science, 214(2), 211–221.  https://doi.org/10.1016/S0376-7388(02)00547-1.Google Scholar
  29. Singh, S., Khulbe, K., Matsuura, T., & Ramamurthy, P. (1998). Membrane characterization by solute transport and atomic force microscopy. Journal of Membrane Science, 142(1), 111–127.  https://doi.org/10.1016/S0376-7388(97)00329-3.Google Scholar
  30. Song, G., Lin, J., Qu, F., & Huie, C. W. (2003). Extraction of catechins and caffeine from different tealeaves and comparison with micellar electrokinetic chromatography. Chinese Science Bulletin, 48(22), 2438–2443.  https://doi.org/10.1360/03wb0105.Google Scholar
  31. Sousa, L. d. S., Cabral, B. V., Madrona, G. S., Cardoso, V. L., & Reis, M. H. M. (2016). Purification of polyphenols from green tea leaves by ultrasound assisted ultrafiltration process. Separation and Purification Technology, 168, 188–198.  https://doi.org/10.1016/j.seppur.2016.05.029.Google Scholar
  32. Thakur, B. K., & De, S. (2012). A novel method for spinning hollow fiber membrane and its application for treatment of turbid water. Separation and Purification Technology, 93, 67–74.  https://doi.org/10.1016/j.seppur.2012.03.032.Google Scholar
  33. Todisco, S., Tallarico, P., & Gupta, B. B. (2002). Mass transfer and polyphenols retention in the clarification of black tea with ceramic membranes. Innovative Food Science & Emerging Technologies, 3(3), 255–262.  https://doi.org/10.1016/S1466-8564(02)00046-2.Google Scholar
  34. Trettin, D. R., & Doshi, M. R. (1980). Ultrafiltration in an unstirred batch cell. Industrial and Engineering Chemistry Fundamentals, 19(2), 189–194.  https://doi.org/10.1021/i160074a010.Google Scholar
  35. Van den Berg, G. B., Rácz, I. G., & Smolders, C. A. (1989). Mass transfer coefficients in cross-flow ultrafiltration. Journal of Membrane Science, 47(1–2), 25–51.  https://doi.org/10.1016/S0376-7388(00)80858-3.Google Scholar
  36. Vasco, C., Ruales, J., & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111(4), 816–823.  https://doi.org/10.1016/j.foodchem.2008.04.054.Google Scholar
  37. Yang, M. (2003). The permeation performance of polyacrylonitrile/polyvinylidine fluoride blend membranes. Journal of Membrane Science, 226(1–2), 119–130.  https://doi.org/10.1016/j.memsci.2003.08.013.Google Scholar
  38. Yang, L., Gao, Y., Zu, Y., Liu, X., Wang, L., & Zu, S. (2006). Epigallocatechin gallate content change of the fresh tea leaf homogenates extracted by different methods in extraction and preservation. Journal of Forestry Research, 17(4), 329–331.  https://doi.org/10.1007/s11676-006-0076-3.Google Scholar
  39. Yoshida, Y., Kiso, M., & Goto, T. (1999). Efficiency of the extraction of catechins from green tea. Food Chemistry, 67(4), 429–433.  https://doi.org/10.1016/S0308-8146(99)00148-X.Google Scholar
  40. Zhang, Y., Lu, H., Wang, B., Zhang, Z., Lin, X., Chen, Z., & Li, B. (2015). Removal of imidacloprid and acetamiprid from tea infusions by microfiltration membrane. International Journal of Food Science & Technology, 50(6), 1397–1404.  https://doi.org/10.1111/ijfs.12785.Google Scholar
  41. Zhu, H., & Qin, P. (2011). Separation of epigallocatechin-3-gallate from crude tea polyphenols by using Cellulose diacetate graft β-cyclodextrin copolymer asymmetric membrane. Frontiers of Chemical Science and Engineering, 5(3), 330–338.  https://doi.org/10.1007/s11705-010-1104-6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations