Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 7, pp 1123–1132 | Cite as

Effects of phosphorylation on the chemical composition, molecular structure, and paste properties of Hedychium coronarium starch

  • Tatielih Pardim de Oliveira Xavier
  • Diego Palmiro Ramirez AscheriEmail author
  • Suely Miranda Cavalcante Bastos
  • Carlos Wanderlei Piler Carvalho
  • José Luis Ramirez Ascheri
  • Cleiber Cintra Morais
Original Paper
  • 91 Downloads

Abstract

This work describes the chemical modification of a non-conventional starch by means of phosphorylation, improving its characteristics in order to meet the demands of the consumer market. The evaluation was made of the effect of phosphorylation on the chemical composition, molecular structure, and paste properties of starch extracted from rhizomes of Hedychium coronarium. Phosphorylation was performed using sodium tripolyphosphate (3–7%), with reaction times of 20, 30, and 40 min. Molecular structure, morphology, chemical composition, and physical properties of the modified starches were analyzed. Phosphorus was not detected in the native sample; however, phosphorylation generated distarch phosphates containing 0.013, 0.233, and 0.477% of phosphorus, with B-type crystallinity patterns, which were more stable than the native starch. The paste properties showed that phosphorylation had a strong influence on the viscosity of the starch reducing the tendency for retrogradation and increasing peak viscosity which was higher than that of native starch. The characteristics of modified H. coronarium starch by phosphorylation produced suitable starches for applications requiring stronger paste consistency and low retrogradation.

Keywords

Starch technology Physicochemical properties Distarch phosphate X-ray diffraction Nuclear magnetic resonance 

Notes

Acknowledgments

The authors wish to thank the State University of Goiás, Embrapa Food Technology, and the UFSCar for their support with the analyses.

Funding Information

This work was financially supported by the Coordination for the Improvement of Higher Education Personnel (Capes), the Foundation for Research Support of Goiás State (Fapeg), and the research stimulation grant of the UEG (BIP).

References

  1. Alcázar-Alay, C. A., & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35(2), 215–236.CrossRefGoogle Scholar
  2. AOAC. (2005). Official methods of analysis of association of official analytical chemists (18th ed.). Gaithersburg: AOAC International.Google Scholar
  3. Ascheri, D. P. R., Moura, W. S., Ascheri, J. L. R., & Carvalho, C. W. P. (2010). Caracterização física e físico-química de rizomas e amido do lírio-do-brejo (Hedychium coronarium). Pesquisa Agropecuária Tropical, 40(2), 159–166.Google Scholar
  4. Ascheri, D. P. R., Pereira, L. D., & Bastos, S. M. C. (2014). Chemical, morphological, rheological and thermal properties of Solanum lycocarpum phosphorylated starches. Revista Ceres, 61(4), 458–466.CrossRefGoogle Scholar
  5. Batista, W. P., Silva, C. E. M., & Liberato, M. C. (2010). Propriedades químicas e de pasta dos amidos de trigo e milho fosforilados. Ciência Tecnologia de Alimentos, 30(1), 88–93.CrossRefGoogle Scholar
  6. Blennow, A. (2015). Phosphorylation of the starch granule. In Y. Nakamura (Ed.), Starch (pp. 399–424). Tokyo: Springer.CrossRefGoogle Scholar
  7. Blennow, A., Nielsen, T. H., Baunsgaard, L., Mikkelsen, R., & Engelsen, S. B. (2002). Starch phosphorylation: a new front line in starch research. Trends in Plant Science, 7(10), 445–450.CrossRefGoogle Scholar
  8. Bruni, G. P., Oliveira, J. P., El Halal, S. L. M., Gundel, A., Miranda, M. Z., Dias, A. R. G., & Zavareze, E. R. (2018). Phosphorylated and cross-linked wheat starches in the presence of polyethylene oxide and their application in biocomposite films. Starch/Stärke, 70(7–8), 1–9.Google Scholar
  9. Carmona-Garcia, R., Sanchez-Rivera, M. M., Mendez-Montealvo, G., Garzamontoya, B., & Bello-Perez, L. A. (2009). Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydrate Polymers, 76(1), 117–122.CrossRefGoogle Scholar
  10. CFR (Code of Federal Regulations). (2013). Food starch-modified. Title 21, Chapter1, Part 172, Sec. 172.892. In Food additives permitted for direct addition to food for human consumption. Washington, DC: U.S. Government Printing Office.Google Scholar
  11. Chaithra, B., Satish, S., Karunakar, H., & Shabaraya, A. R. (2017). Pharmacological review on Hedychium coronarium Koen: the white ginger lily. International Journal of Pharma and Chemical Research, 3(4), 831–836.Google Scholar
  12. Chen, Y., Sun, X., Zhou, X., Hebelstrup, K. H., Blennow, A., & Bao, J. (2017). Highly phosphorylated functionalized rice starch produced by transgenic rice expressing the potato GWD1 gene. Scientific Reports, 7(1), 3339.  https://doi.org/10.1038/s41598-017-03637-5.CrossRefGoogle Scholar
  13. Chung, H. J., Liu, Q., Donner, E., Hoover, R., Warkentin, T. D., & Vandenberg, B. (2008). Composition, molecular structure, properties, and in vitro digestibility of starches from newly released Canadian pulse cultivars. Cereal Chemistry, 85(4), 471–479.CrossRefGoogle Scholar
  14. Claver, I. P., Zhang, H., Li., Q, Kexue, Z., & Zhou, H. (2010). Optimization of ultrasonic extraction of polysaccharides from Chinese malted sorghum using a response surface methodology. Pakistan Journal of Nutrition, 9(4), 336–342.Google Scholar
  15. Gomes, M. A., Ascheri, D. P. R., & Campos, A. J. (2016). Characterization of edible films of Swartzia burchelli phosphate starches and development of coatings for post-harvest application to cherry tomatoes. Semina: Ciências Agrárias, 37(4), 1897.  https://doi.org/10.5433/1679-0359.2016v37n4p1897.Google Scholar
  16. Heo, H., Lee, Y.-K., & Chang, Y. H. (2017). Rheological, pasting, and structural properties of potato starch by cross-linking. International Journal of Food Properties, 20(S2), 138–150.Google Scholar
  17. Instituto Adolfo Lutz. (2008). Métodos físico-químicos para análise de alimentos. São Paulo: Instituto Adolfo Lutz.Google Scholar
  18. Kapelko, M., Zięba, T., Michalski, A., & Gryszkin, A. (2015). Effect of cross-linking degree on selected properties of retrograded starch adipate. Food Chemistry, 167, 124–130.CrossRefGoogle Scholar
  19. Karim, A. A., Toon, L. C., Lee, V. P., Ong, W. Y., Fazilah, A., & Noda, T. (2007). Effects of phosphorus contents on the gelatinization and retrogradation of potato starch. Journal of Food Science, 72(2), 132–138.CrossRefGoogle Scholar
  20. Kramer, M. E. (2009). Structure and function of starch-based edible films and coatings. In K. C. Huber & M. E. Embuscado (Eds.), Edible films and coatings for food applications (pp. 113–134). New York: Springer.CrossRefGoogle Scholar
  21. Leach, H. W., McCowen, L. D., & Schoch, T. J. (1959). Structure of the starch granule. I. Swelling and solubility patterns of various starches. Cereal Chemistry, 36, 534–544.Google Scholar
  22. Leon, E., Piston, F., Aouni, R., Shewry, P. R., Roseli, C. M., Martin, A., & Barro, F. (2010). Pasting properties of transgenic lines of a commercial bread wheat expressing combinations of HMW glutenin subunit genes. Journal of Cereal Science, 51(3), 344–349.CrossRefGoogle Scholar
  23. Lim, S., & Seib, P. A. (1993). Preparation and pasting properties of wheat and corn starch phosphates. Cereal Chemistry, 70(2), 137–144.Google Scholar
  24. Limberger, V. M., Silva, L. P., Emanuelli, T., Comarela, C. G., & Patias, L. D. (2008). Modificação química e física do amido de quirera de arroz para aproveitamento na indústria de alimentos. Química Nova, 31(1), 84–88.CrossRefGoogle Scholar
  25. Lu, Y., Zhong, C. X., Wang, L., Lu, C., Li, X. L., & Wang, P. J. (2009). Anti-inflammation activity and chemical composition of flower essential oil from Hedychium coronarium. African Journal of Biotechnology, 8(20), 5373–5377.Google Scholar
  26. Mahlow, S., Orzechowski, O., & Fettke, J. (2016). Starch phosphorylation: insights and perspectives. Cellular and Molecular Life Sciences, 73(14), 2753–2764.CrossRefGoogle Scholar
  27. Maningat, C. C., Seib, P. A., Bassi, S. D., & Woo, K. S. (2009). Wheat starch: production, properties, modifications and uses. In J. N. Bemiller & R. L. Whistler (Eds.), Starch: chemistry and technology. Elsevier: Academic Press.Google Scholar
  28. Manoi, K., & Rizvi, S. S. H. (2010). Physicochemical characteristics of phosphorylated cross-linked starch produced by reactive supercritical fluid extrusion. Carbohydrate Polymers, 81(3), 687–694.CrossRefGoogle Scholar
  29. McCready, R. M., & Hassid, W. Z. (1943). The separation and quantitative estimation of amylose and amylopectin in potato starch. Journal of the American Chemical Society, 65(6), 1154–1157.CrossRefGoogle Scholar
  30. Nara, S., & Komiya, T. (1983). Studies on the relationship between water-saturated state and crystallinity by the diffraction method for moistened potato starch. Starch/Stärke, 35(12), 407–410.CrossRefGoogle Scholar
  31. Neelan, K., Vijay, S., & Lalit, S. (2012). Various techniques for the modification of starch and the applications of its derivatives. International Research Journal of Pharmacy, 3(5), 25–31.Google Scholar
  32. Neto, R. B. (2004). Raio-X. In S. V. Canevarolo Jr. (Ed.), Técnicas de caracterização de polímeros. São Paulo: Artliber.Google Scholar
  33. Noda, T., Kottearachchi, N. S., Tsuda, S., Mori, M., Takigawa, S., Matsuura-Endo, C., Kin, S. J., Hashimoto, N., & Yamauchi, H. (2007). Starch phosphorus content in potato (Solanum tuberosum L.) cultivars and its effect on other starch properties. Carbohydrate Polymers, 68(4), 793–796.CrossRefGoogle Scholar
  34. Pirt, S. J., & Whelan, W. J. (1951). The determination of starch by acid hydrolysis. Journal of the Science of Food and Agriculture, 2(5), 224–228.  https://doi.org/10.1002/jsfa.2740020507.CrossRefGoogle Scholar
  35. Polnaya, F. J., Haryadi, Marseno, D. W., & Cahyanto, M. N. (2013). Effects of phosphorylation and cross-linking on the pasting properties and molecular structure of sago starch. International Food Research Journal, 20(4), 1609–1615.Google Scholar
  36. Ribeiro, A. E. C., Ascheri, D. P. R., & Ascheri, J. L. R. (2017). Amidos fosfatados da Swartzia burchelli: propriedades físicas e físico-químicas. B. CEPPA, 35(1), 1–17.Google Scholar
  37. Rożnowski, J., Przetaczek-Rożnowska, I., & Boba, D. (2017). Physicochemical properties of native and phosphorylated pumpkin starch. Starch, 69(1-2).  https://doi.org/10.1002/star.201500358.
  38. Sandhu, K. S., & Singh, N. (2007). Some properties of corn starch II: physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507.  https://doi.org/10.1016/j.foodchem.2006.01.060.CrossRefGoogle Scholar
  39. Sang, Y., Seib, P. A., Herrera, A. I., Prakash, O., & Shi, Y. C. (2010). Effects of alkaline treatment on the structure of phosphorylated wheat starch and its digestibility. Food Chemistry, 118(2), 323–327.CrossRefGoogle Scholar
  40. Sechi, N. S. M., & Marques, P. T. (2017). Preparation and physicochemical, structural and morphological characterization of phosphorylated starch. Materials Research, 20(suppl 2), 174–180.  https://doi.org/10.1590/1980-5373-mr-2016-1008.CrossRefGoogle Scholar
  41. Singh, A. V., & Nath, L. K. (2011). Synthesis and evaluation of physicochemical properties of cross-linked Phaseolus aconitifolius starch. Starch/Stäke, 63(10), 655–660.CrossRefGoogle Scholar
  42. Singh, N., Kaur, L., & Ezekiel, R. (2005). Microstructural, cooking and textural characteristics of potato (Solanum tuberosum L.) tubers in relation to physicochemical and functional properties of their flours. Journal of the Science of Food and Agriculture, 85(8), 1275–1284.CrossRefGoogle Scholar
  43. Singh, S., Singh, N., & Macritchie, F. (2011). Relationship of polymeric proteins with pasting, gel dynamic- and dough empirical-rheology in different Indian wheat varieties. Food Hydrocolloids, 25(1), 19–24.CrossRefGoogle Scholar
  44. Sitohy, M. Z., El-Saadany, S. S., Labib, S. M., & Ramadan, M. F. (2000). Physicochemical properties of different types of starch phosphate monoesters. Starch, 52(4), 101–105.CrossRefGoogle Scholar
  45. Tang, H., Mitsunaga, T., & Kawamura, Y. (2004). Relationship between functionality and structure in barley starches. Carbohydrate Polymers, 57(2), 145–152.CrossRefGoogle Scholar
  46. Udachan, I. S., Sahoo, A. K., & Hend, G. M. (2012). Extraction and characterization of sorghum (Sorghum bicolor L. Moench) starch. International Food Research Journal, 19(1), 315–319.Google Scholar
  47. Yuan, Y., Zhang, L., Dai, Y., & Yu, J. (2007). Physicochemical properties of starch obtained from Dioscorea nipponica Makino comparison with other tuber starches. Journal of Food Engineering, 82(4), 436–442.CrossRefGoogle Scholar
  48. Zhang, J., & Wang, Z. W. (2009). Optimization of reaction conditions for resistant Canna edulis Ker. Starch phosphorylation and its structural characterization. Industrial Crops and Products, 30(1), 105–113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Federal Institute of Education, Science and Technology of Goias (IFG)GoiásBrazil
  2. 2.Postgraduate of Agricultural Engineering CourseUEG Anápolis Campus of Exact and Technological Sciences - Henrique SantilloGoiásBrazil
  3. 3.Food Extrusion and Physical Properties Lab, Embrapa Food TechnologyRio de JaneiroBrazil
  4. 4.Postgraduate of Molecular Science CourseUEG Anápolis Campus of Exact and Technological Sciences - Henrique SantilloGoiásBrazil

Personalised recommendations