Advertisement

Development of Microbial Oil Wax-Based Oleogel with Potential Application in Food Formulations

  • Aikaterini Papadaki
  • Eliane Pereira Cipolatti
  • Erika C. G. Aguieiras
  • Martina Costa Cerqueira Pinto
  • Nikolaos Kopsahelis
  • Denise M. G. Freire
  • Ioanna Mandala
  • Apostolis A. KoutinasEmail author
Original Paper
  • 43 Downloads

Abstract

Bio-based wax esters derived from microbial oil have been evaluated as a novel raw material for the production of olive oil–based oleogel. The oleaginous yeast Rhodosporidium toruloides was cultivated in batch fermentation using very high polarity cane sugar as carbon source for the production of a total dry weight of 23.8 g/L with an intracellular microbial oil content of 34% (w/w). The microbial oil was enzymatically converted into oleyl and cetyl wax esters using non-commercial lipases. The highest oil to ester conversion yields for oleyl (94%) and cetyl (91.3%) wax esters were achieved at 40 °C and 50 °C, respectively. When limonene was used as green solvent in the esterification reaction, the high melting temperature cetyl wax esters were produced at 35 °C with a high conversion yield of 87.5%. Subsequently, the microbial oil–derived cetyl wax esters were used for the production of the olive oil–based oleogel. The evaluation of the physical properties (i.e., color, crystal morphology, texture, rheological, and thermal behavior) of the oleogel showed that it was rheologically and thermally suitable for applications in spreadable fat products. This study demonstrated that microbial oil derivatives could be used as novel bio-based raw materials in the preparation of oleogels with potential use in fat-based food products.

Keywords

Bioprocess Microbial oil Wax esters Food processing Oleogel Novel food formulations 

Notes

Acknowledgements

The authors would like to thank Professor Julia de Macedo Robert from the Biochemistry Department in the Federal University of Rio de Janeiro (Brazil) for the contribution in LipB enzyme production, Dr Georgios Liakopoulos from the Department of Crop Science in the Agricultural University of Athens (Greece) for using the polarized light microscopy, Dr Athanasios Mallouchos, Mr. Emmanouil Anagnostaras, and the MSc student Mrs. Ioulia Chrysikou from the Department of Food Science and Human Nutrition in the Agricultural University of Athens for their contribution in the analysis of wax esters and oleogels. The authors also thank the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ) (Processo 202.713/16) for scholarship provision.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Aguieiras, E. C. G., Cavalcanti-Oliveira, E. D., de Castro, A. M., Langone, M. A. P., & Freire, D. M. G. (2014). Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel, 135, 315–321.CrossRefGoogle Scholar
  2. Aksu, Z., & Eren, A. T. (2007). Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochemical Engineering Journal, 35(2), 107–113.CrossRefGoogle Scholar
  3. Anonymous. (2016). Modern Technology of Printing & Writing Inks (with Formulae & Processes). NIIR Board of Consultants & Engineers, Asia Pacific Business Press Inc.Google Scholar
  4. Bemer, H. L., Limbaugh, M., Cramer, E. D., Harper, W. J., & Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Research International, 85, 67–75.CrossRefGoogle Scholar
  5. Blake, A. I., & Marangoni, A. G. (2015). Plant wax crystals display platelet-like morphology. Food Structure, 3, 30–34.CrossRefGoogle Scholar
  6. Carr, R. A., & Vaisey-Genser, M. (2003). Margarine, Methods of Manufacture. In Encyclopedia of Food Sciences and Nutrition (Second Edition), edited by Benjamin Caballero (pp. 3709–3714). Oxford: Academic Press.CrossRefGoogle Scholar
  7. Cavalcanti, E. D. C., Maciel, F. M., Villeneuve, P., Lago, R. C. A., Machado, O. L. T., & Freire, D. M. G. (2007). Acetone powder from dormant seeds of Ricinus communis L: lipase activity and presence of toxic and allergenic compounds. Applied Biochemistry and Biotechnology, 136-140(1-12), 57–65.CrossRefGoogle Scholar
  8. Chaves, K. F., Barrera-Arellano, D., & Ribeiro, A. P. B. (2018). Potential application of lipid organogels for food industry. Food Research International, 105, 863–872.CrossRefGoogle Scholar
  9. Cipolatti, E. P., Pinto, M. C. C., de Macedo Robert, J., da Silva, T. P., da Costa Beralto, T., Santos Jr., J. G. F., et al. (2018). Pilot-scale development of core-shell polymer supports for the immobilization of recombinant lipase B from Candida antarctica and their application in the production of ethyl esters from residual fatty acids. Journal of Applied Polymer Science, 135(40).  https://doi.org/10.1002/app.46727.
  10. Cirillo, N. A., Quirrenbach, C. G., Corazza, M. L., & Voll, F. A. V. (2018). Enzymatic kinetics of cetyl palmitate synthesis in a solvent-free system. Biochemical Engineering Journal, 137, 116–124.CrossRefGoogle Scholar
  11. Cramer, E. D. (2016). Rice Bran Wax Oleogel Water Holding Capacity and Its Effects on the Physical Properties of the Network. M.Sc. Thesis, Ohio State University.Google Scholar
  12. de Castro, A. M., Bevilaqua, J. V., Freire, D. M. G., Torres, F. A., Sant’anna, L. M. M., Gutarra, M. L. E. et al. (2011). Process for the production of lipases by genetic modification of yeast. US20110183400A1.Google Scholar
  13. Deman, J. M., & Beers, A. M. (1987). Fat crystal networks: structure and rheological properties. Journal of Texture Studies, 18(4), 303–318.CrossRefGoogle Scholar
  14. Fayaz, G., Goli, S. A. H., Kadivar, M., Valoppi, F., Barba, L., Calligaris, S., & Nicoli, M. C. (2017). Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT - Food Science and Technology, 86, 523–529.CrossRefGoogle Scholar
  15. Fei, T., & Wang, T. (2017). A review of recent development of sustainable waxes derived from vegetable oils. Current Opinion in Food Science, 16, 7–14.CrossRefGoogle Scholar
  16. Fernandes, K. V., Papadaki, A., da Silva, J. A. C., Fernandez-Lafuente, R., Koutinas, A. A., & Freire, D. M. G. (2018). Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Industrial Crops and Products, 116, 90–96.CrossRefGoogle Scholar
  17. Freire, D. M. G., Gomes, P. M., Bom, E. P. S., & Sant’Anna, G. L., Jr. (1997). Lipase production by a new promising strain of Penicillium restrictum. Revista de Microbiologia, 28, 6–12.Google Scholar
  18. Hartel, R. W., von Elbe, J. H., & Hofberger, R. (2018). Fats, Oils and Emulsifiers. In Confectionery Science and Technology (pp. 85–124). Cham: Springer.CrossRefGoogle Scholar
  19. Hernández-Martín, E., & Otero, C. (2008). Different enzyme requirements for the synthesis of biodiesel: Novozym 435 and Lipozyme-TL IM. Bioresource Technology, 99(2), 277–286.CrossRefGoogle Scholar
  20. Hwang, H. S., Gillman, J. D., Winkler-Moser, J. K., Kim, S., Singh, M., Byars, J. A., & Evangelista, R. L. (2018). Properties of oleogels formed with high-stearic soybean oils and sunflower wax. Journal of the American Oil Chemists' Society, 95(5), 557–569.  https://doi.org/10.1002/aocs.12060.CrossRefGoogle Scholar
  21. Hwang, H.-S., Kim, S., Evans, K. O., Koga, C., & Lee, Y. (2015). Morphology and networks of sunflower wax crystals in soybean oil organogel. Food Structure, 5, 10–20.CrossRefGoogle Scholar
  22. Hwang, H. S., Singh, M., Bakota, E. L., Winkler-Moser, J. K., Kim, S., & Liu, S. X. (2013). Margarine from organogels from plant wax and soybean oil. Journal of the American Oil Chemists' Society, 90(11), 1705–1712.CrossRefGoogle Scholar
  23. Hwang, H. S., Kim, S., Singh, M., Winkler-Moser, J., & Liu, S. (2012). Organogel formation of soybean oil with waxes. Journal of the American Oil Chemists' Society, 89(4), 639–647.CrossRefGoogle Scholar
  24. Imai, T., Nakamura, K., & Shibata, M. (2001). Relationship between the hardness of an oil–wax gel and the surface structure of the wax crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 194(1-3), 233–237.CrossRefGoogle Scholar
  25. Kachrimanidou, V., Kopsahelis, N., Chatzifragkou, A., Papanikolaou, S., Yanniotis, S., Kookos, I., & Koutinas, A. A. (2013). Utilisation of by-products from sunflower-based biodiesel production processes for the production of fermentation feedstock. Waste and Biomass Valorization, 4(3), 529–537.CrossRefGoogle Scholar
  26. Kopsahelis, N., Dimou, C., Papadaki, A., Xenopoulos, E., Kyraleou, M., Kallithraka, S., Kotseridis, Y., Papanikolaou, S., & Koutinas, A. A. (2018). Refining of wine lees and cheese whey for the production of microbial oil, polyphenol-rich extracts and value-added co-products. Journal of Chemical Techology and Biotechnology, 93(1), 257–268.CrossRefGoogle Scholar
  27. Lee, J. H., Akoh, C. C., Himmelsbach, D. S., & Lee, K. T. (2008). Preparation of interesterified plastic fats from fats and oils free of trans fatty acid. Journal of Agricultural and Food Chemistry, 56(11), 4039–4046.CrossRefGoogle Scholar
  28. Lim, J., Jeong, S., Lee, J., Park, S., Lee, J., & Lee, S. (2017). Effect of shortening replacement with oleogels on the rheological and tomographic characteristics of aerated baked goods. Journal of Agricultural and Food Chemistry, 97(11), 3727–3732.CrossRefGoogle Scholar
  29. Manoel, E. A., Robert, J. M., Pinto, M. C. C., Machado, A. C. O., Besteti, M. D., Coelho, M. A. Z., Simas, A. B. C., Fernandez-Lafuente, R., Pinto, J. C., & Freire, D. M. G. (2016). Evaluation of the performance of differently immobilized recombinant lipase B from Candida antarctica preparations for the synthesis of pharmacological derivatives in organic media. RSC Advances, 6(5), 4043–4052.CrossRefGoogle Scholar
  30. Matheson, A., Dalkas, G., Clegg, P. S., & Euston, S. R. (2018). Phytosterol-based edible oleogels: a novel way of replacing saturated fat in food. Nutrition Bulletin, 43(2), 189–194.CrossRefGoogle Scholar
  31. Mattice, K. D., & Marangoni, A. G. (2017). New Insights into Wax Crystal Networks in Oleogels. In A. R. Patel (Ed.), Edible Oil Structuring, Concepts, Methods and Applications (pp. 71–94). UK: The Royal Society of Chemistry.Google Scholar
  32. Moghtadaei, M., Soltanizadeh, N., & Goli, S. A. H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International, 108, 368–377.CrossRefGoogle Scholar
  33. Nagle, N., & Lemke, P. (1990). Production of methyl ester fuel from microalgae. Applied Biochemistry and Biotechnology, 24, 355–361.CrossRefGoogle Scholar
  34. O'Brien R. D. (2008). Fats and Oils Formulation. In Fats and Oils: Formulating and Processing for Applications (pp. 263 - 346), 3rd edn. CRC Press.Google Scholar
  35. Öğütcü, M., & Yılmaz, E. (2014). Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas y Aceites, 65(3), e040.  https://doi.org/10.3989/gya.0349141.CrossRefGoogle Scholar
  36. Paggiola, G., Hunt, A. J., McElroy, C. R., Sherwood, J., & Clark, J. H. (2014). Biocatalysis in bio-derived solvents: an improved approach for medium optimization. Green Chemistry, 16(4), 2107–2110.  https://doi.org/10.1039/C3GC42526F.CrossRefGoogle Scholar
  37. Papadaki, A., Papapostolou, H., Alexandri, M., Kopsahelis, N., Papanikolaou, S., de Castro, A. M., et al. (2018). Fumaric acid production using renewable resources from biodiesel and cane sugar production processes. Environmental Science and Pollution Research, 25(36), 35960–35970.  https://doi.org/10.1007/s11356-018-1791-y.CrossRefGoogle Scholar
  38. Papadaki, A., Mallouchos, A., Efthymiou, M.-N., Gardeli, C., Kopsahelis, N., Aguieiras, E. C. G., Freire, D. M. G., Papanikolaou, S., & Koutinas, A. A. (2017). Production of wax esters via microbial oil synthesis from food industry waste and by-product streams. Bioresource Technology, 245(Part A), 274–282.CrossRefGoogle Scholar
  39. Papanikolaou, S., Kampissopoulou, E., Blanchard, F., Rondags, E., Gardeli, C., Koutinas, A. A., et al. (2017). Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica and Rhodosporidium toruloides. European Journal of Lipid Science and Technology, 119(9).  https://doi.org/10.1002/ejlt.201600507.
  40. Patel, A. R., Schatteman, D., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2013). Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science, 411, 114–121.CrossRefGoogle Scholar
  41. Phuah, E.-T., Beh, B.-K., Lim, C. S.-Y., Tang, T.-K., Lee, Y.-Y., & Lai, O.-M. (2016). Rheological properties, textural properties, and storage stability of palm kernel-based diacylglycerolenriched mayonnaise. European Journal of Lipid Science and Technology, 118(2), 185–194.CrossRefGoogle Scholar
  42. Polburee, P., Yongmanitchai, W., Honda, K., Ohashi, T., Yoshida, T., Fujiyama, K., & Limtong, S. (2016). Lipid production from biodiesel-derived crude glycerol by Rhodosporidium fluviale DMKU-RK253 using temperature shift with high cell density. Biochemical Engineering Journal, 112, 208–218.CrossRefGoogle Scholar
  43. Robert, J. M., Lattari, F. S., Machado, A. C., de Castro, A. M., Almeida, R. V., Torres, F. A. G., Valero, F., & Freire, D. M. G. (2017). Production of recombinant lipase B from Candida antarctica in Pichia pastoris under control of the promoter PGK using crude glycerol from biodiesel production as carbon source. Biochemical Engineering Journal, 118, 123–131.CrossRefGoogle Scholar
  44. Ruguo, Z., Hua, Z., Hong, Z., Ying, F., Kun, L., & Wenwen, Z. (2011). Thermal analysis of four insect waxes based on differential scanning calorimetry (DSC). Procedia Engineering, 18, 101–106.CrossRefGoogle Scholar
  45. Sharma, B. K. (1991). Oils, Fats, Waxes and Soaps. In Industrial Chemistry (p. 1234). Krishna: Prakashan Media (Ltd).Google Scholar
  46. Si, H., Cheong, L.-Z., Huang, J., Wang, X., & Zhang, H. (2016). Physical properties of soybean oleogels and oil migration evaluation in model praline system. Journal of the American Oil Chemists' Society, 93(8), 1075–1084.CrossRefGoogle Scholar
  47. Petrik, S., Obruča, S., Benešová, P., & Márová, I. (2014). Bioconversion of spent coffee grounds into carotenoids and other valuable metabolites by selected red yeast strains. Biochemical Engineering Journal, 90, 307–315.CrossRefGoogle Scholar
  48. Soares, D., Pinto, A. F., Gonçalves, A. G., Mitchell, D. A., & Krieger, N. (2013). Biodiesel production from soybean soapstock acid oil by hydrolysis in subcritical water followed by lipase-catalyzed esterification using lipase-catalyzed esterification using a fermented solid in a packed-bed reactor. Biochemical Engineering Journal, 81, 15–23.CrossRefGoogle Scholar
  49. Sousa, J. S., Cavalcanti-Oliveira, E. D., Aranda, D. A. G., & Freire, D. M. G. (2010). Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 65(1-4), 133–137.CrossRefGoogle Scholar
  50. Talukder, M. M. R., Wu, J. C., Nguyen, T. B. V., Fen, N. M., & Melissa, Y. L. S. (2009). Novozym 435 for production of biodiesel from unrefined palm oil: comparison of methanolysis methods. Journal of Molecular Catalysis B: Enzymatic, 60(3-4), 106–112.CrossRefGoogle Scholar
  51. Tavernier, I., Doan, C. D., de Walle, D. V., Danthine, S., Rimaux, T., & Dewettinck, K. (2017). Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. RCS Advances, 7, 12113.Google Scholar
  52. Tsakona, S., Kopsahelis, N., Chatzifragkou, A., Papanikolaou, S., Kookos, I. K., & Koutinas, A. A. (2014). Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. Journal of Biotechnology, 189, 36–45.CrossRefGoogle Scholar
  53. Tsakona, S., Skiadaresis, A. G., Kopsahelis, N., Chatzifragkou, A., Papanikolaou, S., Kookos, I. K., & Koutinas, A. A. (2016). Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids. Food Chemistry, 198, 85–92.CrossRefGoogle Scholar
  54. Treichel, H., de Oliveira, D., Mazutti, M. A., Luccio, M. D., & Oliveira, J. V. (2010). A review on microbial lipases production. Food and Bioprocess Technology, 3(2), 182–196.CrossRefGoogle Scholar
  55. U.S. Pharmacopeia (2006). United States Pharmacopeia/National Formulary (USP/NF) 29. United States Pharmacopeial ConventionGoogle Scholar
  56. WHO/FAO. (2007). Standard for fat spreads and blended spreads. In CODEX STAN 256. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  57. Xu, J., Zhao, X., Wang, W., Du, W., & Liu, D. (2012). Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochemical Engineering Journal, 65, 30–36.CrossRefGoogle Scholar
  58. Yilmaz, E., & Öğütcü, M. (2015). Oleogels as spreadable fat and butter alternatives: sensory description and consumer perception. RCS Advances, 5, 50259–50267.Google Scholar
  59. Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of Food Science, 78(9), C1334–C1339.  https://doi.org/10.1111/1750-3841.12175.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Aikaterini Papadaki
    • 1
  • Eliane Pereira Cipolatti
    • 2
  • Erika C. G. Aguieiras
    • 2
  • Martina Costa Cerqueira Pinto
    • 3
  • Nikolaos Kopsahelis
    • 4
  • Denise M. G. Freire
    • 2
  • Ioanna Mandala
    • 1
  • Apostolis A. Koutinas
    • 1
    Email author
  1. 1.Department of Food Science and Human NutritionAgricultural University of AthensAthensGreece
  2. 2.Biochemistry Department, Chemistry InstituteFederal University of Rio de Janeiro, Technology Center, A, Lab 549Rio de JaneiroBrazil
  3. 3.Polymer Engineering Laboratory/Engepol, Chemical Engineering Program, COPPEFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Department of Food Science and TechnologyIonian UniversityKefaloniaGreece

Personalised recommendations