Food and Bioprocess Technology

, Volume 12, Issue 5, pp 781–788 | Cite as

Reduction of Zygosaccharomyces rouxii Population in Concentrated Grape Juices by Thermal Pasteurization and Hydrostatic High Pressure Processing

  • M. C. Rojo
  • M. Cristiani
  • N. Szerman
  • M. L. Gonzalez
  • M. C. Lerena
  • L. A. Mercado
  • M. CombinaEmail author
Original Paper


Zygosaccharomyces rouxii is the most frequent spoilage yeast species detected in concentrated grape juice. In order to reduce Z. rouxii populations and consequently extend the microbiological shelf life of this product, different programs of thermal pasteurization and high hydrostatic pressures processing were evaluated. Results showed that pasteurization temperatures higher than 75 °C are necessary to reduce Z. rouxii population in concentrated grape juice. Reduction of 7 logarithms can be reached after 90 s at 75 and 80 °C, and 5 s at 85 °C of pasteurization treatment. High hydrostatic pressure treatment above 500 MPa for 2 min are necessary to reduce 7 logarithms of Z. rouxii population and to significantly extend the shelf life of concentrate grape juice. Extension of holding times from 3 to 5 min, at the different high hydrostatic pressures evaluated, did not improve the Z. rouxii population reduction, nor the shelf life extension of concentrate grape juice. In conclusion, thermal pasteurization and high hydrostatic pressure could be suitable treatments to achieve the reduction of Z. rouxii population below the recommendation limit (102 CFU/g) and extension of the microbiological shelf life of concentrate grape juice.


Concentrated grape juice Zygosaccharomyces rouxii Thermal pasteurization Hydrostatic high pressure 



The authors would like to kindly thank to Institute of Food Technology of INTA Castelar (ITA-INTA) for facilitating the use of the hydrostatic high pressure equipment.

Funding Information

This research was supported by the INTA Technological Project PNAIyAV 1130033.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Abee, T., & Wouters, J. A. (1999). Microbial stress response in minimal processing. International Journal of Food Microbiology, 50, 65–91.CrossRefGoogle Scholar
  2. Alpas, H., Kalchayanand, N., Bozoglu, F., & Ray, B. (2000). Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of food-borne pathogens. International Journal of Food Microbiology, 60, 33–42.CrossRefGoogle Scholar
  3. Argyri, A. A., Panagou, E. Z., Nychas, G. J. E., & Tassou, C. C. (2014). Nonthermal pasteurization of fermented green table olives by means of high hydrostatic pressure processing. BioMed Research International.
  4. Balasubramaniam, V., Farkas, D., & Turek, E. (2008). Preserving foods through high-pressure processing. Food Technology, 62, 32–38.Google Scholar
  5. Ball, C. O., & Olson, F. C. W. (1957). Sterilization in food technology: theory, practice and calculations. In C. O. Ball & F. C. W. Olson (Eds.). New York: McGraw-Hill Book Company.Google Scholar
  6. Bartlett, D. H. (2002). Pressure effects on in vivo microbial processes. Biochimica et Biophysica Acta, Protein Structure and Molecular Enzymology, 1595, 367–381.CrossRefGoogle Scholar
  7. Bean, P. G. (1983). Developments in heat treatment processes for shelf-stable products. In T. A. Roberts & F. A. Skinner (Eds.), Food microbiology: advances and prospects. New York: Academic Press, Inc..Google Scholar
  8. Bozoglu, F., Alpas, H., & Kaletunç, G. (2004). Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Inmunology and Medical Microbiology, 40, 243–247.CrossRefGoogle Scholar
  9. Bruzone, A. (1998). Cadenas alimentarias: Jugo de uva concentrado. Alimentos Argentinos, 8, 42–45.Google Scholar
  10. Bull, M. K., Hayman, M. M., Stewart, C. M., Szabo, E. A., & Knabel, S. J. (2005). Effect of prior growth temperature, type of enrichment medium, and temperature and time of storage on recovery of Listeria monocytogenes following high pressure processing of milk. International Journal of Food Microbiology, 101, 53–61.CrossRefGoogle Scholar
  11. Carreño, O. P., Torija, E., & Zapata, M. A. (2001). Contribución al conocimiento del mosto o zumos de uva comerciales. Departamento de Nutrición y Bromatología II: Bromatología. Facultad de Farmacia. Universidad Complutense de Madrid. OFFARM, 20(5), 150–157.Google Scholar
  12. Chang, Y.-H., Wu, S.-J., Chen, B.-Y., Huang, H.-W., & Wang, C.-Y. (2017). Effect of high-pressure processing and thermal pasteurization on overall quality parameters of white grape juice. Journal of the Science of Food and Agriculture, 97, 3166–3172.CrossRefGoogle Scholar
  13. Combina, M., Daguerre, C., Massera, A., Mercado, L., Sturm, M. E., Ganga, A., & Martinez, C. (2008). Yeasts identification in grape juice concentrates from Argentina. Letters in Applied Microbiology, 46(2), 192–197.CrossRefGoogle Scholar
  14. Coroller, L., Leguerinel, I., Mettler, E., Savy, N., & Mafart, P. (2006). General model, based on two mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. Appied and Enviromental Microbiology, 72, 6493–6502.CrossRefGoogle Scholar
  15. Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2015). Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL Accessed 24 July 2018.
  16. Donsí, G., Ferrari, G., & Maresca, P. (2010). Pasteurization of fruit juices by means of a pulsed high pressure process. Journal of Food Science, 75(3), 169–177.CrossRefGoogle Scholar
  17. Fleet, G. H. (2011). The yeasts- a taxonomic study. In C. Kurtzman & J. W. Fell (Eds.), Yeast spoilage of foods and beverages (pp. 53–63). New York: Springer.Google Scholar
  18. ICMSF - International Commission on Microbiological Specifications of Foods, (1980). Bebidas no alcohólicas, zumos de frutas naturales, concentrados y mermeladas. In: Ecología Microbiana de los Alimentos (pp. 652–677). Zaragoza: Acribia.Google Scholar
  19. INV – National Institute of Viticulture. (2018). Anuario exportaciones 2018 Mercado Externo de productos vitivinícolas and estadísticas varias de vinos y mostos 2018 Argentina. Accessed 14 december 2018.
  20. Martorell, P., Stratford, M., Steels, H., Fernandez-Espinar, M. T., & Querol, A. (2007). Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. International Journal of Food Microbiology, 114, 234–242.CrossRefGoogle Scholar
  21. Milani, E. A., Gardner, R. C., & Silva, F. V. M. (2015). Thermal resistance of Saccharomyces yeast ascospores in beers. International Journal of Food Microbiology, 206, 75–80.CrossRefGoogle Scholar
  22. Mok, C., Song, K. T., Park, Y. S., Lim, S., Ruan, R., & Chen, P. (2006). High hydrostatic pressure pasteurization of red wine. Journal of Food Science, 71(8), 265–269.CrossRefGoogle Scholar
  23. Mota, M. J., Lopes, R. P., Delgadillo, I., & Saraiva, J. A. (2013). Microorganisms under high pressure- adaptation, growth and biotechnological potential. Research review. Biotechnology Advances, 31, 1426–1434.CrossRefGoogle Scholar
  24. Muñoz, M., Ancos, B., Sanchez-Moreno, C., & Cano, M. P. (2007). Effects of high pressure and mild heat on endogenous microflora and on the inactivation and sublethal injury of Escherichia coli inoculated into fruit juices and vegetable soup. Journal of Food Protection, 70, 1587–1593.CrossRefGoogle Scholar
  25. Muñoz-Cuevas, M., Guevara, L., Aznar, A., Martínez, A., Periago, P. M., & Fernandez, P. S. (2011). Variability of single cells of Listeria monocytogenes after high hydrostatic pressure treatments. In E. Cummins, J. M. Frias, & V. P. Valdramidis (Eds.), Seventh international conference on predictive modelling in foods - conference proceedings (pp. 186–189). Dublin, Ireland: UCD, DIT, Teagasc.Google Scholar
  26. Oey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products. A review. Trends in Food Science and Technology, 19, 320–328.CrossRefGoogle Scholar
  27. Patrignani, F., & Lanciotti, R. (2016). Applications of high and ultrahigh pressure homogenization for food safety. Frontiers in Microbiology.
  28. Patterson, M. F., Quinn, M., Simpson, R., & Gilmour, A. (1995). Sensitivity of vegetative pathogens at high hydrostatic pressure treatment in phosphate buffered saline and foods. Journal of Food Protection, 58, 524–529.CrossRefGoogle Scholar
  29. Pega, J., Denoya, G. I., Castells, M. L., Sarquis, S., Aranibar, G. F., Vaudagna, S. R., & Nanni, M. (2018). Effect of high-pressure processing on quality and microbiological properties of a fermented beverage manufactured from sweet whey throughout refrigerated storage. Food and Bioprocess Technology, 11(6), 1001–1010.CrossRefGoogle Scholar
  30. Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43(7), 1936–1943.CrossRefGoogle Scholar
  31. Queirós, R. P., Rainho, D., Santos, M. D., Fidalgo, L. G., Delgadillo, I., & Saraiva, J. A. (2015). High pressure and thermal pasteurization effects on sweet cherry juice microbiological stability and physicochemical properties. High Pressure Research, 35(1), 69–77.CrossRefGoogle Scholar
  32. Raso, J., Calderón, M. L., Góngora, M., Barbosa-Cánovas, G. V., & Swanson, B. G. (1998). Inactivation of Zygosaccharomyces bailii in fruit juices by heat, high hydrostatic pressure and pulsed electric fields. Journal of Food Science.
  33. Rojo M.C., Sturm M.E., Lerena M.C., Falconi P.L., Torres A., & Combina M. (2012) Cálculo de la termoresistencia de distintas cepas de Zygosaccharomyces rouxii aisladas de jugos de uva concentrados de Argentina. XI Congreso Latinoamericano de Microbiología e Higiene de los Alimentos. Buenos Aires, Argentina.Google Scholar
  34. Rojo, M. C., Arroyo López, F. N., Lerena, M. C., Mercado, L., Torres, A., & Combina, M. (2014). Effects of pH and sugar concentration in Zygosaccharomyces rouxii growth and time for spoilage in concentrated grape juice at isothermal and non-isothermal conditions. Food Microbiology, 38, 143–150.CrossRefGoogle Scholar
  35. Rojo, M. C., Arroyo Lopez, F. N., Lerena, M. C., Mercado, L., Torres, A., & Combina, M. (2015). Evaluation of different chemical preservatives to control Zygosaccharomyces rouxii growth in high sugar culture media. Food Control, 50, 349–355.CrossRefGoogle Scholar
  36. Rojo, M.C., Torres Palazzolo, C., Cuello, R., Gonzalez, M., Guevara, F., Ponsone, M.L., Mercado, L.A., Martínez, C., & M, Combina. (2017). Incidence of osmophilic yeasts and Zygosaccharomyces rouxii during the production of concentrate grape juices. Food Microbiology, 64, 7–14.Google Scholar
  37. Royer, C. A. (1995). Application of pressure to biochemical equilibria: the other thermodynamic variable. Methods in Enzymology, 259, 357–377.CrossRefGoogle Scholar
  38. Silva, F. V. M., & Gibbs, P. A. (2010). Non-proteolytic Clostridium Botulinum spores in low-acid cold-distributed foods and design of pasteurization processes. Food Science and Technology, 21, 95–105.CrossRefGoogle Scholar
  39. Stratford, M., Steels, H., Nebe-Von-Caron, G., Novodvorska, M., Hayer, K., & Archer, D. B. (2013). Extreme resistance to weak-acid preservatives in the spoilage yeast Zygosaccharomyces bailli. International Journal of Food Microbiology, 166, 126–134.CrossRefGoogle Scholar
  40. Wang, C. Y., Huang, H. W., Hsu, C. P., & Yang, B. B. (2016). Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition, 56(4), 527–540.CrossRefGoogle Scholar
  41. Worobo, R. W., & Splittstoesser, D. F. (2005). Microbiology of fruit products. In D. M. Barret, L. Somogyi, & H. Ramaswamy (Eds.), Processing fruit (2nd ed., pp. 161–284). Boca Raton: CRC Press, Taylor and Francis Group.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. C. Rojo
    • 1
  • M. Cristiani
    • 2
  • N. Szerman
    • 3
  • M. L. Gonzalez
    • 1
  • M. C. Lerena
    • 1
  • L. A. Mercado
    • 2
  • M. Combina
    • 1
    • 2
    Email author
  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Centro de Estudios Enológicos, Estación Experimental Agropecuaria MendozaInstituto Nacional de Tecnología Agropecuaria (EEA Mza INTA)MendozaArgentina
  3. 3.Instituto Tecnología de Alimentos, Centro de Investigación de AgroindustriaInstituto Nacional de Tecnología Agropecuaria (INTA)Buenos AiresArgentina

Personalised recommendations