Advertisement

The Dietary Fiber Profile, Total Polyphenol Content, Functionality of Silvetia compressa and Ecklonia arborea, and Modifications Induced by High Hydrostatic Pressure Treatments

  • Mireya Tapia-Salazar
  • Idalia Guadalupe Arévalo-Rivera
  • Maribel Maldonado-Muñiz
  • Luis Eduardo Garcia-Amezquita
  • Martha Guadalupe Nieto-López
  • Denis Ricque-Marie
  • Lucía Elizabeth Cruz-SuárezEmail author
  • Jorge Welti-Chanes
Original Paper
  • 36 Downloads

Abstract

This study evaluated the effect of high hydrostatic pressure (HHP) treatments on extraction efficiency and functionality of dietary fiber and polyphenols present in seaweeds. HHP processes at 400 MPa/15 min and 600 MPa/5 min were applied to aqueous dispersions of two edible brown seaweed meals (Silvetia compressa and Ecklonia arborea). The treated and untreated dispersions underwent rheology studies and were analyzed for total dietary fiber (TDF), soluble and insoluble dietary fiber (SDF, IDF), and high and low molecular weight soluble dietary fiber (HMWSDF, LMWSDF). In addition, hydro-ethanolic extracts from treated and untreated dispersions were analyzed for total phenolic content (TPC) and antioxidant activity (DPPH method). The physicochemical properties of both untreated seaweed dispersions were different and the HHP treatment conditions affected them differently. TDF of untreated seaweeds was high (59 and 55%), but SDF/TDF ratios and viscosity were higher in E. arborea. The 400 MPa/15 min treatment increased LMWSDF in E. arborea and SDF (mainly HMWSDF) in S. compressa; the 600 MPa/5 min treatment increased TDF, IDF, and HMWSDF in E. arborea and TDF, IDF, SDF, and HMWSDF in S. compressa. The viscosity of both dispersions increased after HHP treatment, exhibiting a typical pseudoplastic behavior, but this effect was higher for S. compressa. HHP increased the extraction yield and TPC in E. arborea but decreased them in S. compressa and reduced the DPPH radical scavenging activity in both seaweeds, particularly in E. arborea. Compositional and functional changes in HHP-treated seaweeds may have multiple applications in food and nutraceutical industries.

Keywords

Brown seaweed High hydrostatic pressure Dietary fiber profile Rheological properties Polyphenols DPPH 

Notes

Funding Information

This study was funded by the Mexican National Council of Science and Technology (CONACyT) through project number #2014-238458.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

References

  1. AOAC (1995). Official methods of analysis, 15th edn. Gaithesburg, MD.Google Scholar
  2. Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., & Versteeg, C. K. (2008). Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9(2), 155–160.  https://doi.org/10.1016/j.ifset.2007.05.005.CrossRefGoogle Scholar
  3. Balboa, E. M., Conde, E., Moure, A., Falqué, E., & Domínguez, H. (2013). In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chemistry, 138(2-3), 1764–1785.  https://doi.org/10.1016/j.foodchem.2012.11.026.CrossRefPubMedGoogle Scholar
  4. Belalia, F., & Djelali, N. E. (2014). Rheological properties of sodium alginate solutions. Revue Roumaine de Chimie, 59, 135–145.Google Scholar
  5. Bisconsin-Junior, A., Alvarenga, J. F. R., Rosenthal, A., & Monteiro, M. (2015). Effect of high hydrostatic pressure on ascorbic acid, phenolic compounds and antioxidant activity of Pera Rio orange juice. Journal of Food Processing and Technology, 6(2), 1–7.  https://doi.org/10.4172/2157-7110.1000416.CrossRefGoogle Scholar
  6. Boettcher, A. A., & Targett, N. M. (1993). Role of polyphenolic molecular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology, 74(3), 891–903.CrossRefGoogle Scholar
  7. Cabello-Pasini, A., Macías-Carranza, V., Abdala, R., Korbee, N., & Figueroa, F. L. (2011). Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulva rigida (Chlorophyta). Journal of Applied Phycology, 23(3), 363–369.  https://doi.org/10.1007/s10811-010-9548-0.CrossRefGoogle Scholar
  8. Cao, X., Zhang, Y., Zhang, F., Wang, Y., Yi, J., & Liao, X. (2011). Effects of high hydrostatic pressure on enzymes, phenolic compounds, anthocyanins, polymeric color and color of strawberry pulps. Journal of the Science of Food & Agriculture, 91(5), 877–885.  https://doi.org/10.1002/jsfa.4260.CrossRefGoogle Scholar
  9. Catarino, M. D., Silva, A. M. S., & Cardoso, S. M. (2017). Fucaceae: a source of bioactive phlorotannins. International Journal of Molecular Sciences, 18(6).  https://doi.org/10.3390/ijms18061327.
  10. Cosenza V. A., Navarro D. A., Ponce N. M. A., & Stortz C. A. (2017). Seaweed polysaccharides: structure and applications. In: Goyanes S., & D’Accorso N. (Eds.), Industrial applications of renewable biomass products, 1st edn (p. 75), Springer International Publishing.  https://doi.org/10.1007/978-3-319-61288-1_3.
  11. Dang, T. T., Van Vuong, Q., Schreider, M. J., Bowyer, M. C., Van Altena, I. A., & Scarlett, C. J. (2017). Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. Journal of Applied Phycology, 29(6), 3161–3173.  https://doi.org/10.1007/s10811-017-1162-y.CrossRefGoogle Scholar
  12. Garcia-Amezquita, L. E., Tejada-Ortigoza, V., Heredia-Olea, E., Serna-Saldívar, S. O., & Welti-Chanes, J. (2018). Differences in the dietary fiber content of fruits and their by-products quantified by conventional and integrated AOAC official methodologies. Journal of Food Composition and Analysis, 67, 77–85.  https://doi.org/10.1016/j.jfca.2018.01.004.CrossRefGoogle Scholar
  13. García-Becerra, L., Verde, S. J., Castro, R. R., Chávez, M. A., Oranday, C. A., Núñez, G. A., & Rivas, M. C. (2010). Biological activity of Mexican grape pomace extract. Revista Mexicana de Ciencias Farmacéuticas, 41, 28–36.  https://doi.org/10.1016/j.foodchem.2015.08.131.CrossRefGoogle Scholar
  14. Gómez-Ordónez, E., Jiménez-Escrig, A., & Rupérez, P. (2010). Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Research International, 43(9), 2289–2294.  https://doi.org/10.1016/j.foodres.2010.08.005.CrossRefGoogle Scholar
  15. Gupta, S., & Abu-Ghannam, N. (2011). Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science and Technology, 22(6), 315–326.  https://doi.org/10.1016/j.tifs.2011.03.011.CrossRefGoogle Scholar
  16. Heffernan, N., Smyth, T., Soler-Villa, A., FitzGerald, R. J., & Brunton, N. P. (2014). Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). Journal of Applied Phycology, 26(1), 519–530.  https://doi.org/10.1007/s10811-014-0291-9.CrossRefGoogle Scholar
  17. Heffernan, N., Brunton, N., FitzGerald, R., & Smyth, T. (2015). Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Marine Drugs, 13(1), 509–528.  https://doi.org/10.3390/md13010509.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Huang, H. W., Hsu, C. P., Yang, B. B., & Wang, C. Y. (2013). Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology, 33(1), 54–62.  https://doi.org/10.1016/j.tifs.2013.07.001.CrossRefGoogle Scholar
  19. Huang, S., He, Y., Zou, Y., & Liu, Z. (2015). Modification of insoluble dietary fibres in soya bean okara and their physicochemical properties. International Journal of Food Science and Technology, 50(12), 2606–2613.  https://doi.org/10.1111/ijfs.12929.CrossRefGoogle Scholar
  20. Imbs, T., Krasovskaya, N., Ermakova, S., Makarieva, T., Shevchenko, N., & Zvyagintseva, T. (2009). Comparative study of chemical composition and antitumor activity of aqueous-ethanol extracts of brown algae Laminaria cichorioides, Costaria costata, and Fucus evanescens. Russian Journal of Marine Biology, 35(2), 164–170.  https://doi.org/10.1134/S1063074009020084.CrossRefGoogle Scholar
  21. Jimenez-Aguilar, D. M., Escobedo-Avellaneda, Z., Martin-Belloso, O., Gutierrez-Uribe, J., Valdez-Fragoso, A., Garcia-Garcia, R., Torres, J. A., & Welti-Chanes, J. (2015). Effect of high hydrostatic pressure on the content of phytochemical compounds and antioxidant activity of prickly pears (Opuntia ficus-indica) beverages. Food Engineering Reviews, 7(2), 198–208.  https://doi.org/10.1007/s12393-015-9111-5.CrossRefGoogle Scholar
  22. Jiménez-Escrig, A., & Sánchez-Muñiz, F. J. (2000). Dietary fibre from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutrition Research, 20(4), 585–598.  https://doi.org/10.1016/S0271-5317(00)00149-4.CrossRefGoogle Scholar
  23. Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of novel extraction technologies for bioactives from marine algae. Journal of Agricultural and Food Chemistry, 61(20), 4667–4675.  https://doi.org/10.1021/jf400819p.CrossRefPubMedGoogle Scholar
  24. Kadam, S. U., Tiwari, B. K., O’Connell, S., & O’Donnell, C. P. (2015a). Effect of ultrasound pretreatment on the extraction kinetics of bioactives from brown seaweed (Ascophyllum nodosum). Separation Science and Technology, 50(5), 670–675.  https://doi.org/10.1080/01496395.2014.960050. CrossRefGoogle Scholar
  25. Kadam, S. U., Tiwari, B. K., Smith, T. J., & O’Donnell, C. P. (2015b). Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrasonics Sonochemistry, 23, 308–316.  https://doi.org/10.1016/j.ultsonch.2014.10.007. CrossRefPubMedGoogle Scholar
  26. Kim, J. H., Park, Y., Yu, K. W., Imm, J. Y., & Suh, H. J. (2014). Enzyme-assisted extraction of cactus bioactive molecules under high hydrostatic pressure. Journal of the Science of Food & Agriculture, 94(5), 850–856.  https://doi.org/10.1002/jsfa.6317.CrossRefGoogle Scholar
  27. Kraan, S. (2012). Algal polysaccharides, novel applications and outlook. In Chang, C. F. (Ed.), Carbohydrates; comprehensive studies on glycobiology and glycotechnology, 1st edn. (p. 558) INTECH Open Access Published.  https://doi.org/10.5772/51572
  28. Lahaye, M. (1991). Marine-algae as sources of fibers-determination of soluble and insoluble dietary fiber contents in some sea vegetables. Journal of the Science Food and Agriculture, 54(4), 587–594.  https://doi.org/10.1002/jsfa.2740540410.CrossRefGoogle Scholar
  29. Lee, S. H., Kang, M. C., Moon, S. H., Jeon, B. T., & Jeon, Y. J. (2013). Potential use of ultrasound in antioxidant extraction from Ecklonia cava. Algae, 28(4), 371–378.  https://doi.org/10.4490/algae.2013.28.4.371.CrossRefGoogle Scholar
  30. Lee, D., Ghafoor, K., Moon, S., Kim, S. H., Kim, S., Chun, H., & Park, J. (2015). Phenolic compounds and antioxidant properties of high hydrostatic pressure and conventionally treated ginseng (Panax ginseng) products. Quality Assurance and Safety of Crops & Foods, 7(4), 493–500.  https://doi.org/10.3920/QAS2014.0416.CrossRefGoogle Scholar
  31. Lemus-Mondaca, R., Ah-Hen, K., Vega-Gálvez, A., & Zura-Bravo, L. (2016). Effect of high hydrostatic pressure on rheological and thermophysical properties of murtilla (Ugni molinae Turcz) berries. Journal of Food Science and Technology, 53(6), 2725–2732.  https://doi.org/10.1007/s13197-016.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lopez-Sanchez, P., Svelander, C., Bialek, L., Schumm, S., & Langton, M. (2011). Rheology and microstructure of carrot and tomato emulsions as a result of high-pressure homogenization conditions. Journal of Food Science, 76(1), 130–140.  https://doi.org/10.1111/j.1750-3841.2010.01894.x.CrossRefGoogle Scholar
  33. Matanjun, P., Mohamed, S., Mustapha, N. M., Muhammad, K., & Ming, C. H. (2008). Antioxidant activities and phenolics content of eight species of seaweeds from North Borneo. Journal of Applied Phycology, 20(4), 367–373.  https://doi.org/10.1007/s10811-007-9264-6.CrossRefGoogle Scholar
  34. Mateos-Aparicio, I., Mateos-Peinado, C., & Rupérez, P. (2010). High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innovative Food Science and Emerging Technologies, 11(3), 445–450.  https://doi.org/10.1016/j.ifset.2010.02.003.CrossRefGoogle Scholar
  35. Mišurcová, L. (2012). Chemical composition of seaweeds. In E. Se-Know (Ed.), Handbook of marine macroalgae: biotechnology and applied phycology, 1st edn (pp. 173–192). John Wiley & Sons, Ltd., Publication.  https://doi.org/10.1002/9781119977087.ch7
  36. Mudgil, D., & Barak, S. (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. International Journal of Biological Macromolecules, 61, 1–6.  https://doi.org/10.1016/j.ijbiomac.2013.06.044.CrossRefPubMedGoogle Scholar
  37. Pedroche, F. F., Silva, P. C., Aguilar Rosas, L. E., Dreckmann, K. M., & Aguilar-Rosas, R. (2008). Catálogo de las algas marinas bentónicas del Pacífico de México II. Phaeophycota. UAM-I, Ensenada. 146 p. https://www.researchgate.net/profile/Francisco_F_Pedroche/publication/235220637_Catalogo_de_las_algas_marinas_bentonicas_del_Pacifico_de_Mexico_I_Chlorophycota/links/00b49515b285bd4e94000000/Catalogo-de-las-algas-marinas-bentonicas-del-Pacifico-de-Mexico-I-Chlorophycota.pdf.
  38. Pereira, L. (2016). A review of the nutrient composition of selected edible seaweeds. In Edible seaweeds of the world (pp. 15–47). Baton Rouge, Louisiana, USA: Taylor & Francis Group, LLC CRC Press.  https://doi.org/10.1148/rg.272065101
  39. Prasad, K. N., Yang, E., Yi, C., Zhao, M., & Jiang, Y. (2009). Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innovative Food Science and Emerging Technologies, 10(2), 155–159.  https://doi.org/10.1016/j.ifset.2008.11.007.CrossRefGoogle Scholar
  40. Ragan, M. A., & Glombitza, K. W. (1986). Phlorotannins, brown algal polyphenols. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research biopress (vol. 4) (pp. 129–241). Bristol, UK.Google Scholar
  41. Rioux, L. E., Turgeon, S. L., & Beaulieu, M. (2007). Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers, 69(3), 530–537.  https://doi.org/10.1016/j.carbpol.2007.01.009.CrossRefGoogle Scholar
  42. Rodrigues, D., Sousa, S., Silva, A., Amorim, M., Pereira, L., Rocha-Santos, T. A. P., Gomes, A. M. P., Duarte, A. C., & Freitas, A. C. (2015). Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the Central West Coast of Portugal. Journal of Agricultural and Food Chemistry, 63(12), 3177–3188.  https://doi.org/10.1021/jf504220e.CrossRefPubMedGoogle Scholar
  43. Rodrigues, D., Freitas, A. C., Queirós, R., Rocha-Santos, T. A. P., Saraiva, J. A., Gomes, A. M.P. & Duarte, A. C. (2017). Bioactive polysaccharides extracts from Sargassum muticum by high hydrostatic pressure. Journal of Food Processing & Preservation, 41. doi: https://doi.org/10.1111/jfpp.12977
  44. Rovere, P., Sandei, L., Colombi, A., Munari, M., Ghiretti, G., Carpi, G., et al. (1997). Effects of high-pressure treatment on chopped tomatoes. Industrial Conserve, 72(1), 3–12.Google Scholar
  45. Rupérez, P., & Saura-Calixto, F. (2001). Dietary fibre and physicochemical properties of edible Spanish seaweeds. European Food Research and Technology, 22(3), 349–354.  https://doi.org/10.1007/s002170000264.CrossRefGoogle Scholar
  46. Sanz-Pintos, N., Pérez-Jiménez, J., Buschmann, A. H., Vergara-Salinas, J. R., Pérez-Correa, J. R., & Saura-Calixto, F. (2017). Macromolecular antioxidants and dietary fiber in edible seaweeds. Journal of Food Science, 82(2), 289–295.  https://doi.org/10.1111/1750-3841.13592.CrossRefPubMedGoogle Scholar
  47. Scepankova, H., Martins, M., Estevinho, L., Delgadillo, I., & Saraiva, J. A. (2018). Enhancement of bioactivity of natural extracts by non-thermal high hydrostatic pressure extraction. Plant Foods for Human Nutrition, 73(4), 253–267.  https://doi.org/10.1007/s11130-018-0687-9.CrossRefPubMedGoogle Scholar
  48. Sears, J. R. (2002). Keys to the benthic marine algae and seagrasses of British Columbia, Southeast Alaska, Washington and Oregon. Journal of Phycology, 38(1), 234–235.  https://doi.org/10.1046/j.1529-8817.2002.38101.x.CrossRefGoogle Scholar
  49. Shahidi, F. (2009). Nutraceuticals and functional foods: whole versus processed food. Trends in Food Science and Technology, 20(9), 376–387.  https://doi.org/10.1016/j.tifs.2008.08.004.CrossRefGoogle Scholar
  50. Siche, R., Falguera, V., & Ibarz, A. (2012). Influence of temperature and addition of fiber in the flow behavior of orange juice. Scientia Agropecuaria, 3, 303–308.  https://doi.org/10.17268/sci.agropecu.2012.04.04.
  51. Steinberg, P. D. (1985). Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecological Monographs, 55(3), 333–349.  https://doi.org/10.2307/1942581.CrossRefGoogle Scholar
  52. Steinberg, P. D. (1989). Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oecologia, 78(3), 373–382.  https://doi.org/10.1007/BF00379112.CrossRefPubMedGoogle Scholar
  53. Steinberg, P., & Paul, V. (1990). Fish feeding and chemical defenses of tropical brown algae in Western Australia. Marine Ecology Progress Series, 58, 253–259.  https://doi.org/10.3354/meps058253.CrossRefGoogle Scholar
  54. Stiger-Pouvreau, V., Bourgougnon, N., & Deslandes, E. (2016). Carbohydrates from seaweeds. In J. Fleurence & I. Levine (Eds.), Seaweed in health and disease prevention (1st ed., p. 223). New York: Elsevier Inc..  https://doi.org/10.1016/C2014-0-02206-X.CrossRefGoogle Scholar
  55. Tanniou, A., Serrano Leon, E., Vandanjon, L., Ibañez, E., Mendiola, J. A., Cerantola, S., Kervarec, N., Le Barre, S., Marchal, L., & Stiger-Pouvreau, V. (2013). Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta, 104(5), 44–52.  https://doi.org/10.3390/md13053182.CrossRefGoogle Scholar
  56. Tejada-Ortigoza, V., García-Amezquita, L. E., Serna-Saldívar, S. O., & Welti-Chanes, J. (2017). The dietary fiber profile of fruit peels and functionality modifications induced by high hydrostatic pressure treatments. Food Science and Technology International, 23(5), 396–402.  https://doi.org/10.1177/1082013217694301.CrossRefPubMedGoogle Scholar
  57. Tejada-Ortigoza, V., García-Amezquita, L. E., Serna-Saldívar, S. O., Martín-Belloso, O., & Welti-Chanes, J. (2018). High hydrostatic pressure and mild heat treatments for the modification of orange peel dietary fiber: effects of hydroscopic properties and functionality. Food & Bioprocess Technology, 11(1), 110–121.  https://doi.org/10.1007/s11947-017-1998-9.CrossRefGoogle Scholar
  58. Tenorio-Rodriguez, P. A., Murillo-Álvarez, J. I., Campa-Cordova, Á. I., & Angulo, C. (2017). Antioxidant screening and phenolic content of ethanol extracts of selected Baja California Peninsula macroalgae. Journal of Food Science & Technology, 54(2), 422–429.  https://doi.org/10.1007/s13197-016-2478-3.CrossRefGoogle Scholar
  59. Van Alstyne, K. L., McCarthy III, J. J., Hustead, C. L., & Duggins, D. O. (1999). Geographic variation in polyphenolic levels of Northeastern Pacific kelps and rockweeds. Marine Biology, 133(2), 371–379.CrossRefGoogle Scholar
  60. Wang, W., Onnagawa, M., Yoshie, Y., & Suzuki, T. (2001). Binding of bile salts to soluble and insoluble dietary fibers of seaweeds. Fisheries Sci, 9, 969–976.  https://doi.org/10.1046/j.1444-2906.2001.00376.x.CrossRefGoogle Scholar
  61. Wennberg, M., & Nyman, M. (2004). On the possibility of using high pressure treatment to modify physico-chemical properties of dietary fibre in white cabbage (Brassica oleracea var. capitata). Innovative Food Science & Emerging Technologies, 5(2), 171–177.  https://doi.org/10.1016/j.ifset.2004.02.002.CrossRefGoogle Scholar
  62. Xi, J., & Shouqin, Z. (2007). Antioxidant activity of ethanolic extracts of propolis by high hydrostatic pressure extraction. International Journal of Food Science & Technology, 42(11), 1350–1356.  https://doi.org/10.1111/j.1365-2621.2006.01339.x.CrossRefGoogle Scholar
  63. Xi, J., & Wang, B. (2013). Optimization of ultrahigh-pressure extraction of polyphenolic antioxidants from green tea by response surface methodology. Food and Bioprocess Technology, 6(9), 2538–2546.  https://doi.org/10.1007/s11947-012-0891-9.CrossRefGoogle Scholar
  64. Xi, J., Shen, D. J., Zhao, S., Lu, B. B., Li, Y., & Zhang, R. (2009). Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. International Journal of Pharmaceutics, 382(1-2), 139–143.  https://doi.org/10.1016/j.ijpharm.2009.08.023.CrossRefPubMedGoogle Scholar
  65. Yang, Y. Y., Ma, S., Wang, X. X. & Zheng, X. L. (2017). Modification and application of dietary fiber in foods. Journal of Chemistry, ID 9340427.  https://doi.org/10.1155/2017/9340427.
  66. Zhang, B., Lu, F., Liao, K., & Li, P. (2013). Effect of sodium alginate on the rheological properties of difenoconazole suspension concentrates. Journal of Food Agriculture & Environment, 11, 553–556.  https://doi.org/10.1234/4.2013.4350.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mireya Tapia-Salazar
    • 1
  • Idalia Guadalupe Arévalo-Rivera
    • 1
  • Maribel Maldonado-Muñiz
    • 1
  • Luis Eduardo Garcia-Amezquita
    • 2
  • Martha Guadalupe Nieto-López
    • 1
  • Denis Ricque-Marie
    • 1
  • Lucía Elizabeth Cruz-Suárez
    • 1
    Email author return OK on get
  • Jorge Welti-Chanes
    • 2
  1. 1.Facultad de Ciencias BiológicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSATecnológico de MonterreyMonterreyMexico

Personalised recommendations