Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 3, pp 499–511 | Cite as

Application of an Alginate–Chitosan Edible Film on Figs (Ficus carica): Effect on Bioactive Compounds and Antioxidant Capacity

  • M.C. Reyes-Avalos
  • R. Minjares-Fuentes
  • A. Femenia
  • J.C. Contreras-Esquivel
  • A. Quintero-Ramos
  • J.R. Esparza-Rivera
  • J.A. Meza-VelázquezEmail author
Original Paper
  • 285 Downloads

Abstract

The main aim of this study was to evaluate the effect of the application of an alginate–chitosan (A–Ch) coating on the bioactive compounds and the antioxidant capacity of fresh figs (Ficus carica), collected at two maturity stages (referred to as stages III and IV), and stored for 15 days at 6 °C. The composition of the internal atmosphere of the figs, as well as the polyphenol content and antioxidant capacity, was analyzed at 0, 3, 6, 9, 12, and 15 days, respectively. The sensory quality of coated and uncoated figs, stored for 15 days, was also assessed. Fresh figs were used as a reference in the sensory quality evaluation. The A–Ch coating caused considerable modifications in the internal atmosphere of the figs at the two maturity stages evaluated. The ripening process was delayed as O2 was reduced and CO2 concentrations were increased. Further, the total polyphenol content of the figs and, also, identified individual polyphenols, were preserved by the application of the A–Ch coating. Anthocyanins, in particular cyanidin-3-O-rutinoside, were the most abundant bioactive compound. Uncoated figs also exhibited higher antioxidant capacity than coated figs at maturity stage III, whereas in coated figs antioxidant capacity was kept constant along storage period regardless of their maturity stage. Interestingly, the coated figs stored for 15 days at 6 °C showed a high acceptability in the sensory evaluation, being similar to fresh figs. Therefore, the A–Ch coating could be an excellent post-harvest technology useful in preserving not only the organoleptic and sensory attributes but also bioactive components of figs during storage at low temperature.

Keywords

Figs Alginate–chitosan coating Bioactive compounds Antioxidant capacity Sensory quality Low-temperature storage 

Notes

Funding Information

This work was financially supported by the Programa Integral de Fortalecimiento Institucional (PIFI) of the Mexican Government and the Spanish Government (MICINN) (AGL 2012–4627). The author M.C. Reyes-Avalos received funding from the Consejo Nacional de Ciencia y Tecnología (CONACYT) of México and R. Minjares-Fuentes from the Goverment of the Balearic Islands, the research fellowship (FPI/1477/2012) of the “Conselleria d’Educació, Cultura i Universitats,” and the European Social Fund (FSE).

References

  1. Arnon, H., Granit, R., Porat, R., & Poverenov, E. (2015). Development of polysaccharides-based edible coatings for citrus fruits: a layer-by-layer approach. Food Chemistry, 166, 465–472.CrossRefGoogle Scholar
  2. Bourbon, A. I., Pinheiro, A. C., Cerqueira, M. A., Rocha, C. M. R., Avides, M. C., Quintas, M. A. C., & Vicente, A. A. (2011). Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 106(2), 111–118.CrossRefGoogle Scholar
  3. Bunea, A., Rugină, D., Sconţa, Z., Pop, R. M., Pintea, A., Socaciu, C., Tăbăran, F., Grootaert, C., Struijs, K., & VanCamp, J. (2013). Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells. Phytochemistry, 95, 436–444.CrossRefGoogle Scholar
  4. Çalişkan, O., & Aytekin Polat, A. (2011). Phytochemical and antioxidant properties of selected fig (Ficus carica L.) accessions from the eastern Mediterranean region of Turkey. Scientia Horticulturae, 128(4), 473–478.CrossRefGoogle Scholar
  5. Castro-Acosta, M. L., Smith, L., Miller, R. J., McCarthy, D. I., Farrimond, J. A., & Hall, W. L. (2016). Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. The Journal of Nutritional Biochemistry, 38, 154–161.CrossRefGoogle Scholar
  6. Chaudhary, P. R., Jayaprakasha, G. K., Porat, R., & Patil, B. S. (2015). Influence of modified atmosphere packaging on ‘Star Ruby’ grapefruit phytochemicals. Journal of Agricultural and Food Chemistry, 63(3), 1020–1028.CrossRefGoogle Scholar
  7. Chiabrando, V., & Giacalone, G. (2015). Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings. International Journal of Food Sciences and Nutrition, 66(3), 248–253.CrossRefGoogle Scholar
  8. Cisneros-Zevallos, L., & Krochta, J. M. (2002). Internal modified atmospheres of coated fresh fruits and vegetables: understanding relative humidity effects. Journal of Food Science, 67(8), 2792–2797.CrossRefGoogle Scholar
  9. Crisosto, C. H., Bremer, V., Ferguson, L., & Crisosto, G. M. (2010). Evaluating quality attributes of four fresh fig (Ficus carica L.) cultivars harvested at two maturity stages. HortScience, 45(4), 707–710.CrossRefGoogle Scholar
  10. Del Caro, A., & Piga, A. (2008). Polyphenol composition of peel and pulp of two Italian fresh fig fruits cultivars (Ficus carica L.). European Food Research and Technology, 226(4), 715–719.CrossRefGoogle Scholar
  11. Díaz-Mula, H. M., Serrano, M., & Valero, D. (2012). Alginate coatings preserve fruit quality and bioactive compounds during storage of sweet cherry fruit. Food and Bioprocess Technology, 5(8), 2990–2997.CrossRefGoogle Scholar
  12. Díaz-Mula, H. M., Zapata, P. J., Guillén, F., Valverde, J. M., Valero, D., & Serrano, M. (2011). Modified atmosphere packaging of yellow and purple plum cultivars. 2. Effect on bioactive compounds and antioxidant activity. Postharvest Biology and Technology, 61(2–3), 110–116.CrossRefGoogle Scholar
  13. Dueñas, M., Pérez-Alonso, J. J., Santos-Buelga, C., & Escribano-Bailón, T. (2008). Anthocyanin composition in fig (Ficus carica L.). Journal of Food Composition and Analysis, 21(2), 107–115.CrossRefGoogle Scholar
  14. Eim, V. S., Urrea, D., Rosselló, C., García-Pérez, J. V., Femenia, A., & Simal, S. (2013). Optimization of the drying process of carrot (Daucus carota v. Nantes) on the basis of quality criteria. Drying Technology, 31(8), 951–962.CrossRefGoogle Scholar
  15. Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109(3), 372–379.CrossRefGoogle Scholar
  16. Gol, N. B., Patel, P. R., & Rao, T. V. R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85, 185–195.CrossRefGoogle Scholar
  17. González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P.-L. (2012). Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 60(48), 11850–11858.CrossRefGoogle Scholar
  18. González-Centeno, M. R., Knoerzer, K., Sabarez, H., Simal, S., Rosselló, C., & Femenia, A. (2014). Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) – a response surface approach. Ultrasonics Sonochemistry, 21(6), 2176–2184.CrossRefGoogle Scholar
  19. Imahori, Y., Takemura, M., & Bai, J. (2008). Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biology and Technology, 49(1), 54–60.CrossRefGoogle Scholar
  20. Kamiloglu, S., & Capanoglu, E. (2015). Polyphenol content in figs (Ficus carica L.): effect of sun-drying. International Journal of Food Properties, 18(3), 521–535.CrossRefGoogle Scholar
  21. Majidi, H., Minaei, S., Almassi, M., & Mostofi, Y. (2014). Tomato quality in controlled atmosphere storage, modified atmosphere packaging and cold storage. Journal of Food Science and Technology, 51(9), 2155–2161.CrossRefGoogle Scholar
  22. Mantilla, N., Castell-Perez, M. E., Gomes, C., & Moreira, R. G. (2013). Multilayered antimicrobial edible coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus). LWT - Food Science and Technology, 51(1), 37–43.CrossRefGoogle Scholar
  23. Marei, N., & Crane, J. C. (1971). Growth and respiratory response of fig (Ficus carica L. cv. Mission) fruits to ethylene. Plant Physiology, 48(3), 249–254.CrossRefGoogle Scholar
  24. Martínez-García, J. J., Gallegos-Infante, J. A., Rocha-Guzmán, N. E., Ramírez-Baca, P., Candelas-Cadillo, M. G., & González-Laredo, R. F. (2013). Drying parameters of half-cut and ground figs (Ficus carica L.) var. Mission and the effect on their functional properties. Journal of Engineering, 2013, 8.CrossRefGoogle Scholar
  25. Mascaraque, C., Aranda, C., Ocón, B., Monte, M. J., Suárez, M. D., Zarzuelo, A., Marín, J. J. G., Martínez-Augustin, O., & de Medina, F. S. (2014). Rutin has intestinal antiinflammatory effects in the CD4+ CD62L+ T cell transfer model of colitis. Pharmacological Research, 90, 48–57.CrossRefGoogle Scholar
  26. Meighani, H., Ghasemnezhad, M., & Bakhshi, D. (2015). Effect of different coatings on post-harvest quality and bioactive compounds of pomegranate (Punica granatum L.) fruits. Journal of Food Science and Technology, 52(7), 4507–4514.CrossRefGoogle Scholar
  27. Meza-Velázquez, J. A., Alanís-Guzmán, G., García-Díaz, C. L., Fortis-Hernandez, M., Preciado-Rangel, P., & Esparza-Rivera, J. R. (2013). Efecto de una película de hidroxipropilmetil celulosa-parafina en melón Cantaloupe (Cucumis melo) almacenado en frío. Revista Mexicana de Ciencias Agrícolas, 4, 259–271.CrossRefGoogle Scholar
  28. Minitab 18 Statistical Software (2018). State College, PA: Minitab, Inc. http://www.minitab.com. Accessed 1 Feb 2018.
  29. Nishimura, M., Ohkawara, T., Sato, Y., Satoh, H., Suzuki, T., Ishiguro, K., Noda, T., Morishita, T., & Nishihira, J. (2016). Effectiveness of rutin-rich Tartary buckwheat (Fagopyrum tataricum Gaertn.) ‘Manten-Kirari’ in body weight reduction related to its antioxidant properties: a randomised, double-blind, placebo-controlled study. Journal of Functional Foods, 26, 460–469.CrossRefGoogle Scholar
  30. Oliveira, D. M., Kwiatkowski, A., Rosa, C. I. L. F., & Clemente, E. (2014). Refrigeration and edible coatings in blackberry (Rubus spp.) conservation. Journal of Food Science and Technology, 51(9), 2120–2126.CrossRefGoogle Scholar
  31. Owino, W. O., Nakano, R., Kubo, Y., & Inaba, A. (2004). Alterations in cell wall polysaccharides during ripening in distinct anatomical tissue regions of the fig (Ficus carica L.) fruit. Postharvest Biology and Technology, 32(1), 67–77.CrossRefGoogle Scholar
  32. Reyes-Avalos, M. C., Femenia, A., Minjares-Fuentes, R., Contreras-Esquivel, J. C., Aguilar-González, C. N., Esparza-Rivera, J. R., & Meza-Velázquez, J. A. (2016). Improvement of the quality and the shelf life of figs (Ficus carica) using an alginate–chitosan edible film. Food and Bioprocess Technology, 9(12), 2114–2124.CrossRefGoogle Scholar
  33. Rößle, C., Brunton, N., Gormley, R. T., Wouters, R., & Butler, F. (2011). Alginate coating as carrier of oligofructose and inulin and to maintain the quality of fresh-cut apples. Journal of Food Science, 76(1), H19–H29.CrossRefGoogle Scholar
  34. Selcuk, N., & Erkan, M. (2014). Changes in antioxidant activity and postharvest quality of sweet pomegranates cv. Hicrannar under modified atmosphere packaging. Postharvest Biology and Technology, 92, 29–36.CrossRefGoogle Scholar
  35. Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergman, M., Gottlieb, H. E., Altman, A., Kerem, Z., & Flaishman, M. A. (2006). Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). Journal of Agricultural and Food Chemistry, 54(20), 7717–7723.CrossRefGoogle Scholar
  36. Szymanowska, U., Złotek, U., Karaś, M., & Baraniak, B. (2015). Anti-inflammatory and antioxidative activity of anthocyanins from purple basil leaves induced by selected abiotic elicitors. Food Chemistry, 172, 71–77.CrossRefGoogle Scholar
  37. Turan, A., & Celik, I. (2016). Antioxidant and hepatoprotective properties of dried fig against oxidative stress and hepatotoxicity in rats. International Journal of Biological Macromolecules, 91, 554–559.CrossRefGoogle Scholar
  38. Tzoumaki, M. V., Biliaderis, C. G., & Vasilakakis, M. (2009). Impact of edible coatings and packaging on quality of white asparagus (Asparagus officinalis L.) during cold storage. Food Chemistry, 117(1), 55–63.CrossRefGoogle Scholar
  39. Usenik, V., Štampar, F., & Veberič, R. (2009). Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripening. Food Chemistry, 114(2), 529–534.CrossRefGoogle Scholar
  40. Valenzuela, C., Tapia, C., López, L., Bunger, A., Escalona, V., & Abugoch, L. (2015). Effect of edible quinoa protein-chitosan based films on refrigerated strawberry (Fragaria × ananassa) quality. Electronic Journal of Biotechnology, 18(6), 406–411.CrossRefGoogle Scholar
  41. Valero, D., Díaz-Mula, H. M., Zapata, P. J., Guillén, F., Martínez-Romero, D., Castillo, S., & Serrano, M. (2013). Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biology and Technology, 77, 1–6.CrossRefGoogle Scholar
  42. Villalobos, M. D. C., Serradilla, M. J., Martín, A., Ruiz-Moyano, S., Pereira, C., & Córdoba, M. D. G. (2014). Use of equilibrium modified atmosphere packaging for preservation of ‘San Antonio’ and ‘Banane’ breba crops (Ficus carica L.). Postharvest Biology and Technology, 98, 14–22.CrossRefGoogle Scholar
  43. Wang, S. Y., & Gao, H. (2013). Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT- Food Science and Technology, 52(2), 71–79.CrossRefGoogle Scholar
  44. Wang, X., Kong, D., Ma, Z., & Zhao, R. (2015). Effect of carrot puree edible films on quality preservation of fresh-cut carrots. Irish Journal of Agricultural and Food Research, 54(1), 64–71.CrossRefGoogle Scholar
  45. Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069–4075.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Food Research Department, School of ChemistryUniversidad Autónoma de CoahuilaSaltilloMéxico
  2. 2.Universidad La Salle LagunaGómez PalacioMéxico
  3. 3.Facultad de Ciencias QuímicasUniversidad Juárez del Estado de DurangoGómez PalacioMéxico
  4. 4.Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
  5. 5.Facultad de Ciencias QuímicasUniversidad Autónoma de ChihuahuaChihuahuaMéxico

Personalised recommendations