Food and Bioprocess Technology

, Volume 12, Issue 2, pp 288–297 | Cite as

Combined Effect of High Pressure Processing with Enterocins or Thymol on the Inactivation of Listeria monocytogenes and the Characteristics of Sliced Dry-cured Ham

  • Aida Pérez-Baltar
  • Alejandro Serrano
  • Daniel Bravo
  • Raquel Montiel
  • Margarita MedinaEmail author
Original Paper


The effect of high pressure processing (HPP) at 450 MPa for 10 min, enterocins A and B, thymol, and their combinations on the inactivation of a four-strain cocktail of Listeria monocytogenes and the properties of sliced dry-cured ham during 30 days at 4 and 12 °C was investigated. Enterocins A and B initially reduced L. monocytogenes levels by more than 2.5 log units, but a regrowth was recorded during the storage. Individual treatments of thymol and HPP exhibited a low antimicrobial effect against the pathogen. A synergistic antibacterial activity against L. monocytogenes was observed when HPP was combined with enterocins A and B, preventing the recovery of the pathogen during all the storage period. Such combined treatment also maintained total viable counts (TVC) at low levels after 30 days at 4 and 12 °C. Minor changes were detected in pH, aw, color parameters, and shear strength values in dry-cured ham treated with enterocins A and B, thymol, HPP, and their combinations during the storage at both temperatures. Combination of HPP at 450 MPa for 10 min and enterocins A and B might be applied as a hurdle technology, since it reduced L. monocytogenes counts and spoilage bacteria, and slightly affected the characteristics of sliced dry-cured ham.


L. monocytogenes Enterocins Thymol High pressure processing Sliced dry-cured ham 



FPI/INIA scholarship to A. Pérez-Baltar is acknowledged. We thank Máximo de Paz for his valuable help in high pressure treatments.

Funding Information

This work has received financial support from projects RTA2013-00070-C03-01 (Spanish Ministry of Economy and Competitiveness) and Listeria Cero (INIA and interprofessional organizations ASICI and INTERPORC).


  1. Ananou, S., Garriga, M., Jofré, A., Aymerich, T., Gálvez, A., Maqueda, M., et al. (2010). Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages. Meat Science, 84(4), 594–600.CrossRefGoogle Scholar
  2. Andrés, A. I., Adamsen, C. E., Møller, J. K. S., Ruiz, J., & Skibsted, L. H. (2006). High-pressure treatment of dry-cured Iberian ham. Effect on colour and oxidative stability during chill storage packed in modified atmosphere. European Food Research and Technology, 222(5–6), 486–491.CrossRefGoogle Scholar
  3. Angsupanich, K., & Ledward, D. A. (1998). High pressure treatment effects on cod (Gadus morhua) muscle. Food Chemistry, 63(1), 39–50.CrossRefGoogle Scholar
  4. Arqués, J. L., Rodríguez, E., Gaya, P., Medina, M., & Nuñez, M. (2005). Effect of combinations of high-pressure treatment and bacteriocins producing lactic acid bacteria on the survival of Listeria monocytogenes in raw milk cheese. International Dairy Journal, 15(6–9), 893–900.CrossRefGoogle Scholar
  5. Arqués, J. L., Rodríguez, E., Nuñez, M., & Medina, M. (2008a). Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in cuajada, a semisolid dairy product manufactured in Spain. Journal of Dairy Science, 91(1), 70–75.CrossRefGoogle Scholar
  6. Arqués, J. L., Rodríguez, E., Nuñez, M., & Medina, M. (2008b). Inactivation of gram-negative pathogens in refrigerated milk by reuterin in combination with nisin or the lactoperoxidase system. European Food Research and Technology, 227(1), 77–82.CrossRefGoogle Scholar
  7. Aymerich, T., Jofré, A., Garriga, M., & Hugas, M. (2005). Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. Journal of Food Protection, 68(1), 173–177.CrossRefGoogle Scholar
  8. Aymerich, T., Picouet, P. A., & Monfort, J. . M. (2008). Decontamination technologies for meat products. Meat Science, 78(1–2), 114–129.Google Scholar
  9. Barefoot, S. F., & Klaenhammer, T. R. (1983). Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Applied Environmental Microbiology, 45(6), 1808–1815.PubMedGoogle Scholar
  10. Callaway, T. R., Carroll, J. A., Arthington, J. D., Edrington, T. S., Anderson, R. C., Ricke, S. C. et al. (2011). Citrus products and their use against bacteria: potential health and cost benefits (p. 277–286). In: R.R. Watson et al. (Eds.), Nutrients, dietary supplements and nutriceuticals: cost analysis versus clinical benefits. Humana Press, New York.Google Scholar
  11. Clariana, M., Guerrero, L., Sárraga, C., Díaz, I., Valero, A., & García-Regueiro, A. (2011). Influence of high pressure application on the nutritional, sensory and microbiological characteristics of sliced skin vacuum packed dry-cured ham. Effects along the storage period. Innovative Food Science and Emerging Technologies, 12(4), 456–465.CrossRefGoogle Scholar
  12. De Alba, M., Montiel, R., Bravo, D., Gaya, P., & Medina, M. (2012). High pressure treatments on the inactivation of Salmonella Enteritidis and the physicochemical, rheological and color characteristics of sliced vacuum-packaged dry-cured ham. Meat Science, 91(2), 173–178.CrossRefGoogle Scholar
  13. De Alba, M., Bravo, D., & Medina, M. (2013). Inactivation of Escherichia coli O157:H7 in dry-cured ham by high-pressure treatments combined with biopreservatives. Food Control, 31(2), 508–513.CrossRefGoogle Scholar
  14. De Alba, M., Bravo, D., & Medina, M. (2015). Inactivation of Listeria monocytogenes and Salmonella Enteritidis in dry-cured ham by combined treatments of high pressure and the lactoperoxidase system or lactoferrin. Innovative Food Science and Emerging Technologies, 31, 54–59.CrossRefGoogle Scholar
  15. Delves-Broughton, J., Blackburn, P., Evans, R. J., & Hugenholtz, J. (1996). Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek, 69(2), 193–202.CrossRefGoogle Scholar
  16. Du, L., Fang, L., Ping, Z., Tong, Z., & Doyle, M. P. (2017). Characterization of Enterococcus durans 152 bacteriocins and their inhibition of Listeria monocytogenes in ham. Food Microbiology, 68, 97–103.CrossRefGoogle Scholar
  17. EFSA (European Food Safety Authority) (2017). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal, 15(12), 5077.Google Scholar
  18. FDA (Food and Drug Administration) (2017). Code of Federal Regulations Title 21(3), Part 172: food additives permitted for direct addition to food for human consumption. Available on: Accessed 13 June 2018
  19. Friedly, E. C., Crandall, P. G., Ricke, S. C., Roman, M., O’Bryan, C., & Chalova, V. L. (2009). In vitro antilisterial effects of citrus oil fractions in combination with organic acids. Journal of Food Science, 74(2), 67–72.CrossRefGoogle Scholar
  20. Fuentes, V., Ventanas, J., Morcuende, D., Estévez, M., & Ventanas, S. (2010). Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure. Meat Science, 85(3), 506–514.CrossRefGoogle Scholar
  21. Galazka, V. B., & Ledward, D. A. (1998). High pressure effects on biopolymers. In S. E. Hill, D. A. Ledward, & J. R. Mitchell (Eds.). Functional properties of food macromolecules (pp. 278–301). Gaithersburg, MD: Aspen Publishers Inc.Google Scholar
  22. Garriga, M., Aymerich, T., Costa, S., Monfort, J. M., & Hugas, M. (2002). Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiology, 19(5), 509–518.CrossRefGoogle Scholar
  23. Garriga, M., Grèbol, N., Aymerich, M. T., Monfort, J. M., & Hugas, M. (2004). Microbial inactivation after high-pressure processing al 600 MPa in commercial meat products over its shelf life. Innovative Food Science and Emerging Technologies, 5(4), 451–457.CrossRefGoogle Scholar
  24. Geornaras, I., Belk, K. E., Scanga, J. A., Kendall, P. A., Smith, G. C., & Sofos, J. N. (2005). Postprocessing antimicrobial treatments to control Listeria monocytogenes in commercial vacuum-packaged Bologna and ham stored at 10 °C. Journal of Food Protection, 68(5), 991–998.CrossRefGoogle Scholar
  25. Ghanbari, M., Jami, M., Domig, K. J., & Kneifel, W. (2013). Seafood biopreservation by lactic acid bacteria - a review. LWT-Food Science and Technology, 54(2), 315–324.CrossRefGoogle Scholar
  26. Gouveia, A. R., Alves, M., de Almeida, J. M. M. M., Monteiro-Silva, F., González-Aguilar, G., Silva, J. A., et al. (2017). The antimicrobial effect of essential oils against Listeria monocytogenes in sous vide cook-chill beef during storage. Journal of Food Processing and Preservation, 41(4), e13066.CrossRefGoogle Scholar
  27. Hereu, A., Dalgaard, P., Garriga, M., Aymerich, T., & Bover-Cid, S. (2012). Modeling the high pressure inactivation kinetics of Listeria monocytogenes on RTE cooked meat products. Innovative Food Science and Emerging Technologies, 16, 305–315.CrossRefGoogle Scholar
  28. Herranz, C., Casaus, P., Mukhopadhyay, S., Martínez, J. M., Rodríguez, J. M., Nes, I. F., et al. (2001). Enterococcus faecium P21: a strain occurring naturally in dry-fermented sausages producing the class II bacteriocins enterocin a and enterocin B. Food Microbiology, 18(2), 115–131.CrossRefGoogle Scholar
  29. Huang, Y., Luo, Y. B., Zhai, Z. Y., Zhang, H. X., Yang, C. X., Tian, H. T., et al. (2009). Characterization and application of an anti-Listeria bacteriocin produced by Pediococcus pentosaceus 05-10 isolated from Sichuan Pickle, a traditionally fermented vegetable product from China. Food Control, 20(11), 1030–1035.CrossRefGoogle Scholar
  30. Jofré, A., Aymerich, T., Monfort, J. M., & Garriga, M. (2008). Application of enterocins A and B, sakacin K and nisin to extend the safe shelf-life of pressurized ready-to-eat meat products. European Food Research and Technology, 228, 159–162.CrossRefGoogle Scholar
  31. Karatzas, A. K., Kets, E. P. W., Smid, E. J., & Bennik, M. H. J. (2001). The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A. Journal of Applied Microbiology, 90(3), 463–469.CrossRefGoogle Scholar
  32. Lado, B. H., & Yousef, A. E. (2007). Characteristics of Listeria monocytogenes to food processors, p. 157–214. In: Ryser ET and EH Marth (eds.), Listeria, listeriosis and food safety. CRC Press, Boca Raton, Florida.Google Scholar
  33. León, K., Mery, D., & Pedreschi, F. (2006). Color measurement in L*a*b* units from RGB digital images. Food Research International, 39(10), 1084–1091.CrossRefGoogle Scholar
  34. Licata, M., Tuttolomondo, T., Dugo, G., Ruberto, G., Leto, C., Napoli, E. M., et al. (2015). Study of quantitative and qualitative variations in essential oils of Sicilian oregano biotypes. Journal of Essential Oil Research, 27(4), 293–306.CrossRefGoogle Scholar
  35. Lin, C. M., Takeuchi, K., Zhang, L., Dohm, C. B., Meyer, J. D., Hall, P. A., et al. (2006). Cross-contamination between processing equipment and deli meats by Listeria monocytogenes. Journal of Food Protection, 69(1), 71–79.CrossRefGoogle Scholar
  36. Liu, G., Wang, Y., Gui, M., Zheng, H., Dai, R., & Li, P. (2012). Combined effect of high hydrostatic pressure and enterocin LM-2 on the refrigerated shelf life of ready-to-eat sliced vacuum-packed cooked ham. Food Control, 24(1–2), 64–71.CrossRefGoogle Scholar
  37. Ma, H. J., & Ledward, D. A. (2004). High pressure/thermal treatment effect on the texture of beef muscle. Meat Science, 68(3), 347–355.CrossRefGoogle Scholar
  38. Mancini, E., Senatore, F., Del Monte, D., De Martino, L., Grulova, D., Scognamiglio, M., et al. (2015). Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L. essential oils. Molecules, 20(7), 12016–12028.CrossRefGoogle Scholar
  39. Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Lorenzo, A. D., Nabavi, S. F., et al. (2016). Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chemistry, 210, 402–404.CrossRefGoogle Scholar
  40. Marcos, B., Aymerich, T., & Garriga, M. (2005). Evaluation of high pressure processing as an additional hurdle to control Listeria monocytogenes and Salmonella enterica in low-acid fermented sausages. Journal of Food Science, 70(7), 339–344.CrossRefGoogle Scholar
  41. Marcos, B., Jofré, A., Aymerich, T., Monfort, J. M., & Garriga, M. (2008). Combined effect of natural antimicrobials and high pressure processing to prevent Listeria monocytogenes growth after a cold chain break during storage of cooked ham. Food Control, 19(1), 76–81.CrossRefGoogle Scholar
  42. Marcos, B., Kerry, J. P., & Mullen, A. M. (2010). High pressure induced changes on sarcoplasmic protein fraction and quality indicators. Meat Science, 85(1), 115–120.CrossRefGoogle Scholar
  43. Mith, H., Duré, R., Delcenserie, V., Zhiri, A., Daube, G., & Clinquart, A. (2014). Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Science & Nutrition, 2(4), 403–416.CrossRefGoogle Scholar
  44. Montiel, R., Bravo, D., De Alba, M., Gaya, P., & Medina, M. (2012). Combined effect of high pressure treatments and the lactoperoxidase system on the inactivation of Listeria monocytogenes in cold-smoked salmon. Innovative Food Science and Emerging Technologies, 16, 26–32.CrossRefGoogle Scholar
  45. Montiel, R., Martín-Cabrejas, I., Gaya, P., & Medina, M. (2014). Reuterin and high hydrostatic pressure treatments on the inactivation of Listeria monocytogenes and effect on the characteristics of cold-smoked salmon. Food and Bioprocess Technology, 7(8), 2319–2329.CrossRefGoogle Scholar
  46. Montiel, R., Martín-Cabrejas, I., & Medina, M. (2015). Natural antimicrobials and high-pressure treatments on the inactivation of Salmonella Enteritidis and Escherichia coli O157:H7 in cold-smoked salmon. Journal of the Science of Food and Agriculture, 96, 2573–2578.CrossRefGoogle Scholar
  47. Moon, H., Kim, N. H., Kim, Y., Ryu, J. H., & Rhee, M. S. (2017). Teriyaki sauce with carvacrol or thymol effectively controls Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and indigenous flora in marinated beef and marinade. Meat Science, 129, 147–152.CrossRefGoogle Scholar
  48. Nieto-Lozano, J. C., Reguera-Useros, J. I., Pelaez-Martinez, M. D., Sacristan-Perez-Minayo, G., Gutierrez-Fernandez, A. J., & De la Torre, A. H. (2010). The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry fermented sausages and frankfurters. Food Control, 21(5), 679–685.CrossRefGoogle Scholar
  49. Ortiz, S., López, V., Villatoro, D., López, P., Dávila, J. C., & Martínez-Suárez, J. V. (2010). A 3-year surveillance of the genetic diversity of Listeria monocytogenes in an Iberian pig slaughterhouse and processing plant. Foodborne Pathogens and Disease, 7(10), 1177–1184.CrossRefGoogle Scholar
  50. Pan, K., Chen, H., Davidson, M., & Zhong, Q. (2014). Thymol nanoencapsulated by sodium caseinate: physical and antilisterial properties. Journal of Agricultural and Food Chemistry, 62(7), 1649–1657.CrossRefGoogle Scholar
  51. Park, J., & Kim, M. (2013). Comparison of dry medium culture plates for mesophilic aerobic bacteria in milk, ice cream, ham and codfish fillet products. Preventive Nutrition and Food Science, 18(4), 569–272.Google Scholar
  52. Patterson, M. F. (2005). Microbiology of pressure-treated foods. Journal of Applied Microbiology, 98(6), 1400–1409.CrossRefGoogle Scholar
  53. Pesavento, G., Calonico, C., Bilia, A. R., Barnabei, M., Calesini, F., Addona, R., et al. (2015). Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control, 54, 188–199.CrossRefGoogle Scholar
  54. Raeisi, M., Tajik, H., Razavi, S. M., Tepe, B., Kiani, H., Khoshbakht, R., et al. (2016). Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes. Veterinary Research. Forum, 7(1), 7–11.Google Scholar
  55. Ray, B. (2004). Fundamental food microbiology. Washington, DC, USA, 3rd ed. CRC Press, p 313.Google Scholar
  56. Rodríguez, E., González, B., Gaya, P., Nuñez, M., & Medina, M. (2000). Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. International Dairy Journal, 10(1–2), 7–15.CrossRefGoogle Scholar
  57. Rodríguez, M., Nuñez, F., Córdoba, J. J., Bermúdez, M. E., & Asensio, M. A. (1998). Evaluation of proteolytic activity of micro-organisms isolated from dry cured ham. Journal of Applied Microbiology, 85(5), 905–912.CrossRefGoogle Scholar
  58. Shah, B., Davidson, M., & Zhong, Q. (2012). Nanocapsular dispersion of thymol for enhanced dispersibility and increased antimicrobial effectiveness against Escherichia coli O157:H7 and Listeria monocytogenes in model food systems. Applied and Environmental Microbiology, 78(23), 8448–8453.CrossRefGoogle Scholar
  59. Steel, R. G. D., Torrie, J. H., & Dickey, D. (1996). Principles and procedures of statistics. A biometrical approach (3rd ed.). New York, NY: McGraw-Hill.Google Scholar
  60. Sun, X. D., & Holley, R. A. (2010). High hydrostatic pressure effects in the texture of meat and meat products. Journal of Food Science, 75(1), R17–R23.CrossRefGoogle Scholar
  61. Tahiri, L., Desbiens, M., Kheadr, E., Lacroix, C., & Hiss, L. (2009). Comparison of different application strategies of divergicin M35 for inactivation of Listeria monocytogenes in cold-smoked salmon. Food Microbiology, 26(8), 783–793.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Aida Pérez-Baltar
    • 1
  • Alejandro Serrano
    • 1
  • Daniel Bravo
    • 1
  • Raquel Montiel
    • 1
  • Margarita Medina
    • 1
    Email author
  1. 1.Departamento Tecnología de AlimentosINIAMadridSpain

Personalised recommendations