Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 2, pp 220–227 | Cite as

Effects of High Hydrostatic Pressure on the Properties of Heat-Induced Wheat Gluten Gels

  • Bingzhi Wang
  • Fengru Liu
  • Shuizhong LuoEmail author
  • Peijun Li
  • Dongdong Mu
  • Yanyan Zhao
  • Xiyang Zhong
  • Shaotong Jiang
  • Zhi ZhengEmail author
Original Paper
  • 104 Downloads

Abstract

This study examined the effects of high hydrostatic pressure pretreatment (100–400 MPa) on the properties of heat-induced wheat gluten (WG) gels. The results showed that treatment with pressure higher than 100 MPa significantly increased the strength, water-holding capacity (WHC), non-freezable water (Wnf), and storage modulus (G′) of heat-induced WG gels. When pressure was increased from 100 to 400 MPa, the free SH content of the heat-induced WG gels increased to 23.55 μmol/g protein, and the surface hydrophobicity (H0) increased to 25.36. Fourier transform infrared spectroscopy (FTIR) analysis showed that the β-sheet and random coil content of the WG treated by high-pressure increased with pressure, while the α-helix and β-turn content decreased. Scanning electron microscopy (SEM) showed that the heat-induced WG gels had more uniform and dense three-dimensional networks after high-hydrostatic-pressure pretreatment.

Keywords

High pressure Wheat gluten Heat-induced Gel properties 

Notes

Funding

This research was funded by The National Key Research and Development Program of China (Grant Nos. 2018YFD0400600 and 2018YFD0400400), the National Natural Science Foundation of China (Grant No. 31701638), and the Key Scientific and Technological Project of Anhui Province of China (Grant Nos. 16030701082 and 17030701014).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Byaruhanga, Y. B., Emmambux, M. N., & Belton, P. S. (2006). Alteration of Kafirin and Kafirin film structure by heating with microwave energy and tannin Complexation. Journal of Agricultural & Food Chemistry, 54(12), 4198–4207.CrossRefGoogle Scholar
  2. Cao, F. H., Li, X. J., Luo, S. Z., Mu, D. D., Zhong, X. Y., Jiang, S. T., & Zhao, Y. Y. (2017). Effects of organic acid coagulants on the physical properties of and chemical interactions in tofu. LWT- Food Science and Technology, 85, 5865.CrossRefGoogle Scholar
  3. Chan, K. Y., & Wasserman, B. P. (1993). Direct colorimetric assay of free thiol groups and disulfide bonds in suspensions of solubilized and particulate cereal proteins. Cereal Chemistry, 70(1), 22–26.Google Scholar
  4. Chen, F. L., Wei, Y. M., & Zhang, B. (2010). Characterization of water state and distribution in textured soybean protein using DSC and NMR. Journal of Food Engineering, 100(3), 522–526.CrossRefGoogle Scholar
  5. Chen, X., Chen, C. G., Zhou, Y. Z., Li, P. J., Ma, F., Nishiumi, T., & Suzuki, A. (2014). Effects of high pressure processing on the thermal gelling properties of chicken breast myosin containing κ-carrageenan. Food Hydrocolloids, 40(ISSN), 262–272.CrossRefGoogle Scholar
  6. Colmenero, F. J. (2000). Relevant factors in strategies for fat reduction in meat products. Trends in Food Science & Technology, 11(2), 56–66.CrossRefGoogle Scholar
  7. Day, L., Augustin, M. A., Batey, I. L., & Wrigley, C. W. (2006). Wheat-gluten uses and industry needs. Trends in Food Science & Technology, 17(2), 82–90.CrossRefGoogle Scholar
  8. Dondero, M., Figueroa, V., & Morales, X. (2006). Transglutaminase effect on gelation capacity of thermally induced beef protein gels. Food Chemistry, 99(3), 546–554.CrossRefGoogle Scholar
  9. He, R., He, H. Y., Chao, D., Ju, X., & Aluko, R. (2014). Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food & Bioprocess Technology, 7(5), 1344–1353.CrossRefGoogle Scholar
  10. Hu, H., Fan, X., Zhou, Z., Xu, X., Fan, G., Wang, L., & Zhu, L. (2013). Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrasonics Sonochemistry, 20(1), 187–195.CrossRefGoogle Scholar
  11. Ibanoglu, E. (2005). Effect of hydrocolloids on the thermal denaturation of proteins. Food Chemistry, 90(4), 621–626.CrossRefGoogle Scholar
  12. Irisj, J., Bert, L., & Jana, D. (2009). Endogenous redox agents and enzymes that affect protein network formation during breadmaking -- a review. Journal of Cereal Science, 50(1), 1–10.CrossRefGoogle Scholar
  13. Ko, W. C., Jao, C. L., & Hsu, K. C. (2003). Effect of hydrostatic pressure on molecular conformation of Tilapia (Orechromis niloticus) myosin. Journal of Food Science, 68(4), 1192–1195.CrossRefGoogle Scholar
  14. Kong, X., Zhou, H., & Hua, Y. (2010). Preparation and antioxidant activity of wheat gluten hydrolysates (WGHs) using ultrafiltration membranes. Journal of the Science of Food & Agriculture, 88(5), 920–926.CrossRefGoogle Scholar
  15. Liu, H. H., Chien, J. T., & Kuo, M. I. (2013). Ultra high pressure homogenized soy flour for tofu making. Food Hydrocolloids, 32(2), 278–285.CrossRefGoogle Scholar
  16. Ma, X. S., Yi, S. M., Yu, Y. M., Li, J. R., & Chen, J. R. (2015). Changes in gel properties and water properties of Nemipterus virgatus surimi gel induced by high-pressure processing. LWT - Food Science and Technology, 61(2), 377–384.CrossRefGoogle Scholar
  17. Maningat, C. C., Demeritt, G. K. J., Chinnaswamy, R., et al. (1999). Properties and applications of texturized wheat gluten. Cereal Foods World, 44(9), 650–655.Google Scholar
  18. Meng, G. T., & Ma, C. Y. (2001). Thermal properties of Phaseolus angularis (red bean) globulin. Food Chemistry, 73(4), 453–460.CrossRefGoogle Scholar
  19. Moreno, H. M., Bargiela, V., Tovar, C. A., Cando, D., Borderias, A. J., & Herranz, B. (2015). High pressure applied to frozen flying fish ( Parexocoetus brachyterus ) surimi: Effect on physicochemical and rheological properties of gels. Food Hydrocolloids, 48(4), 127–134.CrossRefGoogle Scholar
  20. Pedroa, A., Hosahallis, R., & Ashrafa, I. (2008). High pressure gelation of soy proteins: Effect of concentration, pH and additives. Journal of Food Engineering, 88(3), 331–340.CrossRefGoogle Scholar
  21. Qin, X. S., Luo, S. Z., Cai, J., Zhong, X. Y., Jiang, S. T., Zheng, Z., & Zhao, Y. Y. (2016). Effects of microwave pretreatment and transglutaminase crosslinking on the gelation properties of soybean protein isolate and wheat gluten mixtures. Journal of the Science of Food & Agriculture, 96(10), 3559–3566.CrossRefGoogle Scholar
  22. Qiu, C., Xia, W., & Jiang, Q. (2013). Effect of high hydrostatic pressure (HHP) on myofibril-bound serine proteinases and myofibrillar protein in silver carp (Hypophthalmichthys molitrix). Food Research International, 52(1), 199–205.CrossRefGoogle Scholar
  23. Santhi, D., Kalaikannan, A., & Sureshkumar, S. (2015). Factors influencing meat emulsion properties and product texture: A review. Critical Reviews in Food Technology, 57(10), 2021–2027.CrossRefGoogle Scholar
  24. Speroni, F., & Añón, M. C. (2013). Cold-set gelation of high pressure-treated soybean proteins. Food Hydrocolloids, 33(1), 85–91.CrossRefGoogle Scholar
  25. Tananuwong, K., & Reid, D. S. (2004). DSC and NMR relaxation studies of starch–water interactions during gelatinization. Carbohydrate Polymers, 58(3), 345–358.CrossRefGoogle Scholar
  26. Tang, C. H., & Ma, C. Y. (2009). Effect of high pressure treatment on aggregation and structural properties of soy protein isolate. LWT - Food Science and Technology, 42(2), 606–611.CrossRefGoogle Scholar
  27. Tang, C. H., Chen, L., & Foegeding, E. A. (2011). Mechanical and water-holding properties and microstructures of soy protein isolate emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and transglutaminase: Influence of thermal treatments before and/or after emulsification. Journal of Agricultural & Food Chemistry, 59(8), 4071–4077.CrossRefGoogle Scholar
  28. Wang, Z., Li, Y., Jiang, L., Qi, B., & Zhou, L. (2014). Relationship between secondary structure and surface hydrophobicity of soybean protein isolate subjected to heat treatment. Journal of Chemistry, 2014(5), 1–10.Google Scholar
  29. Wang, K. Q., Luo, S. Z., Zhong, X. Y., Cai, J., Jiang, S. T., & Zheng, Z. (2017). Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation. Food Chemistry, 214, 393–399.CrossRefGoogle Scholar
  30. Xue, S., Yang, H., Wang, H., Tendu, A. A., Bai, Y., Xu, X., & Zhou, G. (2017). High-pressure effects on the molecular aggregation and physicochemical properties of myosin in relation to heat gelation. Food Research International, 99(Pt 1), 413–418.CrossRefGoogle Scholar
  31. Yoon, W. B., Gunasekaran, S., & Park, J. W. (2004). Characterization of thermorheological behavior of Alaska Pollock and Pacific whiting surimi. Journal of Food Science, 69(7), 338–343.CrossRefGoogle Scholar
  32. Yoshida, H., Hatakeyama, T., & Hatakeyama, H. (1993). Characterization of water in polysaccharide hydrogels by DSC. Journal of Thermal Analysis, 40(2), 483–489.CrossRefGoogle Scholar
  33. Zhang, Z., Yang, Y., Tang, X., Chen, Y., & You, Y. (2015). Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chemistry, 188, 111–118.CrossRefGoogle Scholar
  34. Zhou, A., Lin, L., Liang, Y., Benjakul, S., Shi, X., & Liu, X. (2014). Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure. Food Chemistry, 156(4), 402–407.CrossRefGoogle Scholar
  35. Zhu, Z., Lanier, T. C., & Farkas, B. E. (2015). High pressure effects on heat-induced gelation of threadfin bream (Nemipterus spp.) surimi. Journal of Food Engineering, 146, 23–27.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bingzhi Wang
    • 1
  • Fengru Liu
    • 1
  • Shuizhong Luo
    • 1
    Email author
  • Peijun Li
    • 1
  • Dongdong Mu
    • 1
  • Yanyan Zhao
    • 1
  • Xiyang Zhong
    • 1
  • Shaotong Jiang
    • 1
  • Zhi Zheng
    • 1
    Email author
  1. 1.School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui ProvinceHefei University of TechnologyHefeiChina

Personalised recommendations