Advertisement

Food and Bioprocess Technology

, Volume 12, Issue 1, pp 1–15 | Cite as

Current Perspectives on Non-conventional Heating Ovens for Baking Process—a Review

  • N. Chhanwal
  • Pravin R. BhushetteEmail author
  • C. Anandharamakrishnan
Original Paper
  • 99 Downloads

Abstract

Advancement in technology and changing lifestyle demand reduction in baking time with good quality product. One of the ways to reduce the baking time is by introducing rapid heating modes such as microwave, infrared and jet impingement heating. However, use of such heating modes during the baking process may alter the final product quality such as surface colour, moisture content, crumb hardness and porosity. Energy efficiency and product quality are the prime factors for any process industry and combining two or more heating modes (hybrid heating) can yield the desired quality of baked product. Therefore, hybrid heating oven shows promise of providing energy and time efficient baking process. Use of hybrid heating requires a thorough knowledge of baking process along with biochemical and physical transformation. This review contents scientific papers published in the last 15 years mainly, dealing with various ovens and its hybrid heating modes used for the baking process are summarized along with the merits and limitations of these approaches.

Keywords

Hybrid heating Microwave Infrared heating Jet impingement Electric resistance oven 

References

  1. Almeida, M., Torrance, K. E., & Datta, A. K. (2006). Measurement of optical properties of foods in near- and mid-infrared radiation. International Journal of Food Properties, 9(4), 651–664.  https://doi.org/10.1080/10942910600853667.CrossRefGoogle Scholar
  2. Anderson, B. A., & Singh, R. P. (2006). Effective heat transfer coefficient measurement during air impingement thawing using an inverse method. International Journal of Refrigeration, 29(2), 281–293.  https://doi.org/10.1016/J.IJREFRIG.2005.05.016.CrossRefGoogle Scholar
  3. Banooni, S., Hosseinalipour, S. M., Mujumdar, A. S., Taheran, E., Bahiraei, M., & Taherkhani, P. (2008). Baking of flat bread in an impingement oven: An experimental study of heat transfer and quality aspects. Drying Technology, 26(7), 902–909.  https://doi.org/10.1080/07373930802142614.CrossRefGoogle Scholar
  4. Bilgen, S., Coşkuner, Y., & Karababa, E. (2004). Effects of baking parameters on the white layer cake quality by combined use of conventional and microwave ovens. Journal of Food Processing and Preservation, 28(2), 89–102.  https://doi.org/10.1111/j.1745-4549.2004.tb00813.x.CrossRefGoogle Scholar
  5. Campañone, L. A., & Zaritzky, N. E. (2005). Mathematical analysis of microwave heating process. Journal of Food Engineering, 69(3), 359–368.  https://doi.org/10.1016/J.JFOODENG.2004.08.027.CrossRefGoogle Scholar
  6. Campañone, L. A., & Zaritzky, N. E. (2010). Mathematical modeling and simulation of microwave thawing of large solid foods under different operating conditions. Food and Bioprocess Technology, 3(6), 813–825.  https://doi.org/10.1007/s11947-009-0249-0.CrossRefGoogle Scholar
  7. Campañone, L. A., Paola, C. A., & Mascheroni, R. H. (2012). Modeling and simulation of microwave heating of foods under different process schedules. Food and Bioprocess Technology, 5(2), 738–749.  https://doi.org/10.1007/s11947-010-0378-5.CrossRefGoogle Scholar
  8. Cauvain, S. P., & Young, L. S. (2003). Water control in baking, în Bread making: Improving quality, ed. Cauvain, SP. Woodhead Publishing Limited, Cambridge.Google Scholar
  9. Cha-um, W., Rattanadecho, P., & Pakdee, W. (2011). Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: Influence of sample sizes, positions, and microwave power. Food and Bioprocess Technology, 4(4), 544–558.  https://doi.org/10.1007/s11947-009-0187-x.CrossRefGoogle Scholar
  10. Chavan, R. S., & Chavan, S. R. (2010). Microwave baking in food industry: A review. International Journal of Dairy Science, 5(3), 113–127.CrossRefGoogle Scholar
  11. Chhanwal, N., & Anandharamakrishnan, C. (2014). Temperature- and moisture-based modeling for prediction of starch gelatinization and crumb softness during bread-baking process. Journal of Texture Studies, 45(6), 462–476.  https://doi.org/10.1111/jtxs.12097.CrossRefGoogle Scholar
  12. Chhanwal, N., Indrani, D., Raghavarao, K. S. M. S., & Anandharamakrishnan, C. (2011). Computational fluid dynamics modeling of bread baking process. Food Research International, 44(4), 978–983.  https://doi.org/10.1016/J.FOODRES.2011.02.037.CrossRefGoogle Scholar
  13. Chhanwal, N., Tank, A., Raghavarao, K. S. M. S., & Anandharamakrishnan, C. (2012). Computational fluid dynamics (CFD) modeling for bread baking process—A review. Food and Bioprocess Technology, 5(4), 1157–1172.  https://doi.org/10.1007/s11947-012-0804-y.CrossRefGoogle Scholar
  14. Chhanwal, N., Ezhilarasi, P. N., Indrani, D., Anandharamakrishnan, C. (2015). Influence of electrical and hybrid heating on bread quality during baking. Journal of Food Science & Technology, 52, 4467–4474.  https://doi.org/10.1007/s13197-014-1478-4.
  15. Datta, A. K., & Anantheswaran, R. C. (2001). Handbook of microwave technology for food applications. M. Dekker.Google Scholar
  16. Datta, A. K., & Ni, H. (2002). Infrared and hot-air-assisted microwave heating of foods for control of surface moisture. Journal of Food Engineering, 51(4), 355–364.  https://doi.org/10.1016/S0260-8774(01)00079-6.CrossRefGoogle Scholar
  17. Datta, A. K., & Rakesh, V. (2013). Principles of microwave combination heating. Comprehensive Reviews in Food Science and Food Safety, 12(1), 24–39.  https://doi.org/10.1111/j.1541-4337.2012.00211.x.CrossRefGoogle Scholar
  18. Datta, A. K., Sahin, S., Sumnu, G., & Ozge Keskin, S. (2007). Porous media characterization of breads baked using novel heating modes. Journal of Food Engineering, 79(1), 106–116.  https://doi.org/10.1016/J.JFOODENG.2006.01.046.CrossRefGoogle Scholar
  19. Decareau, R. V. (1985). Microwaves in food processing industry. USA: Academic Press.Google Scholar
  20. Decareau RV (1992) Microwave foods: New product development. Food & Nutrition Press.Google Scholar
  21. Decock, P., & Cappelle, S. (2005). Bread technology and sourdough technology. Trends in Food Science & Technology, 16(1–3), 113–120.  https://doi.org/10.1016/J.TIFS.2004.04.012.CrossRefGoogle Scholar
  22. Demirekler, P., Sumnu, G., & Sahin, S. (2004). Optimization of bread baking in a halogen lamp?microwave combination oven by response surface methodology. European Food Research and Technology, 219(4), 341–347.  https://doi.org/10.1007/s00217-004-0969-3.CrossRefGoogle Scholar
  23. Demirkesen, I., Sumnu, G., Sahin, S., & Uysal, N. (2011). Optimisation of formulations and infrared-microwave combination baking conditions of chestnut-rice breads. International Journal of Food Science & Technology, 46(9), 1809–1815.  https://doi.org/10.1111/j.1365-2621.2011.02682.x.CrossRefGoogle Scholar
  24. Demirkesen, I., Sumnu, G., & Sahin, S. (2013a). Image analysis of gluten-free breads prepared with chestnut and rice flour and baked in different ovens. Food and Bioprocess Technology, 6(7), 1749–1758.  https://doi.org/10.1007/s11947-012-0850-5.CrossRefGoogle Scholar
  25. Demirkesen, I., Sumnu, G., & Sahin, S. (2013b). Quality of gluten-free bread formulations baked in different ovens. Food and Bioprocess Technology, 6(3), 746–753.  https://doi.org/10.1007/s11947-011-0712-6.CrossRefGoogle Scholar
  26. Demirkesen, I., Campanella, O. H., Sumnu, G., Sahin, S., & Hamaker, B. R. (2014). A study on staling characteristics of gluten-free breads prepared with chestnut and rice flours. Food and Bioprocess Technology, 7(3), 806–820.  https://doi.org/10.1007/s11947-013-1099-3.CrossRefGoogle Scholar
  27. Derde, L. J., Gomand, S. V., Courtin, C. M., & Delcour, J. A. (2014). Moisture distribution during conventional or electrical resistance oven baking of bread dough and subsequent storage. Journal of Agricultural and Food Chemistry, 62(27), 6445–6453.CrossRefGoogle Scholar
  28. Fluch, J., Brunner, C., & Grubbauer, A. (2017). Potential for energy efficiency measures and integration of renewable energy in the European food and beverage industry based on the results of implemented projects. Energy Procedia, 123, 148–155.  https://doi.org/10.1016/J.EGYPRO.2017.07.243.CrossRefGoogle Scholar
  29. Gally, T., Rouaud, O., Jury, V., & Le-Bail, A. (2016). Bread baking using ohmic heating technology; a comprehensive study based on experiments and modelling. Journal of Food Engineering, 190, 176–184.  https://doi.org/10.1016/J.JFOODENG.2016.06.029.CrossRefGoogle Scholar
  30. Geedipalli, S. S. R., Rakesh, V., & Datta, A. K. (2007). Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering, 82(3), 359–368.  https://doi.org/10.1016/J.JFOODENG.2007.02.050.CrossRefGoogle Scholar
  31. Geedipalli, S., Datta, A. K., & Rakesh, V. (2008). Heat transfer in a combination microwave–jet impingement oven. Food and Bioproducts Processing, 86(1), 53–63.  https://doi.org/10.1016/J.FBP.2007.10.016.CrossRefGoogle Scholar
  32. He, H., & Hoseney, R. C. (1991). A critical look at the electric resistance oven. Cereal Chemistry, 68(2), 151–155.Google Scholar
  33. İçöz, D., Sumnu, G., & Sahin, S. (2004). Color and texture development during microwave and conventional baking of breads. International Journal of Food Properties, 7(2), 201–213.  https://doi.org/10.1081/JFP-120025396.CrossRefGoogle Scholar
  34. Jambunathan, K., Lai, E., Moss, M. A., & Button, B. L. (1992). A review of heat transfer data for single circular jet impingement. International Journal of Heat and Fluid Flow, 13(2), 106–115.  https://doi.org/10.1016/0142-727X(92)90017-4.CrossRefGoogle Scholar
  35. Keskin, S., Sumnu, G., & Sahin, S. (2004). Usage of enzymes in a novel baking process. Nahrung/Food, 48(2), 156–160.  https://doi.org/10.1002/food.200300412.CrossRefPubMedGoogle Scholar
  36. Keskin, S. O., Oztürk, S., Sahin, S., Koksel, H., & Sumnu, G. (2005). Halogen lamp–microwave combination baking of cookies. European Food Research and Technology, 220(5–6), 546–551.  https://doi.org/10.1007/s00217-005-1131-6.CrossRefGoogle Scholar
  37. Keskin, S. O., Sumnu, G., & Sahin, S. (2006). A study on the effects of different gums on dielectric properties and quality of breads baked in infrared-microwave combination oven. European Food Research and Technology, 224(3), 329–334.  https://doi.org/10.1007/s00217-006-0334-9.CrossRefGoogle Scholar
  38. Keskin, S. O., Sumnu, G., & Sahin, S. (2007). A study on the effects of different gums on dielectric properties and quality of breads baked in infrared-microwave combination oven. European Food Research and Technology, 224(3), 329–334.  https://doi.org/10.1007/s00217-006-0334-9. CrossRefGoogle Scholar
  39. Khatir, Z., Taherkhani, A. R., Paton, J., Thompson, H., Kapur, N., & Toropov, V. (2015). Energy thermal management in commercial bread-baking using a multi-objective optimisation framework. Applied Thermal Engineering, 80, 141–149.  https://doi.org/10.1016/J.APPLTHERMALENG.2015.01.042.CrossRefGoogle Scholar
  40. Kocer, D., Nitin, N., & Karwe, M. (2007). Application of CFD in jet impingement oven. In D. W. Sun (Ed.), Computational fluid dynamics in food processing (pp. 469–487). Boca Raton: CRC Press.CrossRefGoogle Scholar
  41. Krishnamurthy, K., Khurana, H. K., Soojin, J., Irudayaraj, J., & Demirci, A. (2008). Infrared heating in food processing: An overview. Comprehensive Reviews in Food Science and Food Safety, 7(1), 2–13.  https://doi.org/10.1111/j.1541-4337.2007.00024.x.CrossRefGoogle Scholar
  42. Kumar, C. M., Appu Rao, A. G., & Singh, S. A. (2009). Effect of infrared heating on the formation of sesamol and quality of defatted flours from Sesamum indicum L. Journal of Food Science, 74(4), H105–H111.CrossRefGoogle Scholar
  43. Levinson, M.L. (1992). Two stage process for cooking/browning/crusting food by microwave energy and infrared energy. US5094865.Google Scholar
  44. Li, A., & Walker, C. E. (1996). Cake baking in conventional, impingement and hybrid ovens. Journal of Food Science, 61(1), 188–191.  https://doi.org/10.1111/j.1365-2621.1996.tb14756.x.CrossRefGoogle Scholar
  45. Li, X.-D., Alamir, M., Witrant, E., Della-Valle, G., Rouaud, O., Boillereaux, L., & Josset, C. (2013). Further investigations on energy saving by jet impingement in bread baking process. IFAC Proceedings, 46(2), 701–706.  https://doi.org/10.3182/20130204-3-FR-2033.00017.CrossRefGoogle Scholar
  46. López-Hortas, L., Gannon, L., Moreira, R., Chenlo, F., Domínguez, H., & Torres, M. D. (2018). Microwave hydrodiffusion and gravity (MHG) processing of Laminaria ochroleuca brown seaweed. Journal of Cleaner Production, 197, 1108–1116.  https://doi.org/10.1016/J.JCLEPRO.2018.06.274.CrossRefGoogle Scholar
  47. Lucas, T. (2014). Baking, bakery products science and technology. Chichester: John Wiley & Sons.Google Scholar
  48. Marcroft, H. E., & Karwe, M. V. (1999). Flow field in a hot air jet impingement oven—Part I: A single impinging jet. Journal of Food Processing and Preservation, 23(3), 217–233.  https://doi.org/10.1111/j.1745-4549.1999.tb00381.x.CrossRefGoogle Scholar
  49. Marcroft, H. E., Chandrasekaran, M., & Karwe, M. V. (1999). Flow field in a hot air jet impingement oven ? Part 11: Multiple impingement jets. Journal of Food Processing and Preservation, 23(3), 235–248.  https://doi.org/10.1111/j.1745-4549.1999.tb00382.x.CrossRefGoogle Scholar
  50. Martin, M. L., Zeleznak, K. J., & Hoseney, R. C. (1991). A mechanism of bread firming. I. Role of starch swelling. Cereal Chemistry, 68, 498–503.Google Scholar
  51. Martínez-Bustos, F., Morales, S. E., Chang, Y. K., Herrera-Gómez, A., Martínez, M. J. L., Baños, L., Rodríguez, M. E., & Flores, M. H. E. (1999). Effect of infrared baking on wheat flour tortilla characteristics. Cereal Chemistry Journal, 76(4), 491–495.  https://doi.org/10.1094/CCHEM.1999.76.4.491.CrossRefGoogle Scholar
  52. Mukherjee, S., Asthana, A., Howarth, M., & Mcniell, R. (2017). Waste heat recovery from industrial baking ovens. Energy Procedia, 123, 321–328.  https://doi.org/10.1016/J.EGYPRO.2017.07.259.CrossRefGoogle Scholar
  53. Najib, A. M., Abdullah, M. Z., Khor, C. Y., & Saad, A. A. (2015). Experimental and numerical investigation of 3D gas flow temperature field in infrared heating reflow oven with circulating fan. International Journal of Heat and Mass Transfer, 87, 49–58.  https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2015.03.075.CrossRefGoogle Scholar
  54. Nitin, N., & Karwe, M. V. (2001). Heat transfer coefficient for cookie shaped objects in a hot air jet impingement oven. Journal of Food Process Engineering, 24(1), 51–69.  https://doi.org/10.1111/j.1745-4530.2001.tb00531.x.CrossRefGoogle Scholar
  55. Nitin, N., & Karwe, M. V. (2006). Numerical simulation and experimental investigation of conjugate heat transfer between a turbulent hot air jet impinging on a cookie-shaped object. Journal of Food Science, 69(2), fep59–fep65.  https://doi.org/10.1111/j.1365-2621.2004.tb15510.x.CrossRefGoogle Scholar
  56. Nitin, N., Gadiraju, R. P., & Karwe, M. V. (2006). Conjugate heat transfer associated with a turbulent hot air jet impinging on a cylindrical object. Journal of Food Process Engineering, 29(4), 386–399.  https://doi.org/10.1111/j.1745-4530.2006.00072.x.CrossRefGoogle Scholar
  57. Nowak, D., & Lewicki, P. P. (2004). Infrared drying of apple slices. Innovative Food Science & Emerging Technologies, 5(3), 353–360.  https://doi.org/10.1016/J.IFSET.2004.03.003.CrossRefGoogle Scholar
  58. Olsson, E. E. M., Trägårdh, A. C., & Ahrné, L. M. (2005). Effect of near-infrared radiation and jet impingement heat transfer on crust formation of bread. Journal of Food Science, 70(8), e484–e491.  https://doi.org/10.1111/j.1365-2621.2005.tb11519.x.CrossRefGoogle Scholar
  59. Ovadia, D. Z., & Walker, C. E. (1996). Re-examination of the bread firming curve. Starch-Starke, 48(4), 137–144.  https://doi.org/10.1002/star.19960480404.CrossRefGoogle Scholar
  60. Ovadia, D. Z., & Walker, C. E. (1998). Impingement in food processing. Food Technology (USA), 52(4), 46–50.Google Scholar
  61. Ozge Ozkoc, S., Sumnu, G., & Sahin, S. (2009). The effects of gums on macro and micro-structure of breads baked in different ovens. Food Hydrocolloids, 23(8), 2182–2189.CrossRefGoogle Scholar
  62. Ozge, S., Sumnu, G., & Meda, V. (2006). The effect of different formulations on physical properties of cakes baked with microwave and near infrared-microwave combinations. Journal of Microwave Power and Electromagnetic Energy, 41(1), 20–26.  https://doi.org/10.1080/08327823.2006.11688551.CrossRefGoogle Scholar
  63. Ozkahraman, B. C., Sumnu, G., & Sahin, S. (2016). Effect of different flours on quality of legume cakes to be baked in microwave-infrared combination oven and conventional oven. Journal of Food Science and Technology, 53(3), 1567–1575.  https://doi.org/10.1007/s13197-015-2101-z.CrossRefPubMedGoogle Scholar
  64. Ozkoc, S. O., & Seyhun, N. (2015). Effect of gum type and flaxseed concentration on quality of gluten-free breads made from frozen dough baked in infrared-microwave combination oven. Food and Bioprocess Technology, 8(12), 2500–2506.  https://doi.org/10.1007/s11947-015-1615-8.CrossRefGoogle Scholar
  65. Ozkoc, S. O., Sumnu, G., Sahin, S., & Turabi, E. (2009). Investigation of physicochemical properties of breads baked in microwave and infrared-microwave combination ovens during storage. European Food Research and Technology, 228(6), 883–893.  https://doi.org/10.1007/s00217-008-1001-0.CrossRefGoogle Scholar
  66. Ozmutlu, O., Sumnu, G., & Sahin, S. (2001). Assessment of proofing of bread dough in the microwave oven. European Food Research and Technology, 212(4), 487–490.  https://doi.org/10.1007/s002170000276.CrossRefGoogle Scholar
  67. Patel, B. K., Waniska, R. D., & Seetharaman, K. (2005). Impact of different baking processes on bread firmness and starch properties in breadcrumb. Journal of Cereal Science, 42(2), 173–184.  https://doi.org/10.1016/J.JCS.2005.04.007.CrossRefGoogle Scholar
  68. Ploteau, J. P., Glouannec, P., Nicolas, V., & Magueresse, A. (2015). Experimental investigation of French bread baking under conventional conditions or short infrared emitters. Applied Thermal Engineering, 75, 461–467.  https://doi.org/10.1016/J.APPLTHERMALENG.2014.09.034.CrossRefGoogle Scholar
  69. Purlis, E. (2014). Optimal design of bread baking: Numerical investigation on combined convective and infrared heating. Journal of Food Engineering, 137, 39–50.  https://doi.org/10.1016/j.jfoodeng.2014.03.033.CrossRefGoogle Scholar
  70. Purlis, E., & Salvadori, V. O. (2010). A moving boundary problem in a food material undergoing volume change—Simulation of bread baking. Food Research International, 43(4), 949–958.  https://doi.org/10.1016/J.FOODRES.2010.01.004.CrossRefGoogle Scholar
  71. Rakesh, V., Datta, A. K., Amin, M. H. G., & Hall, L. D. (2009). Heating uniformity and rates in a domestic microwave combination oven. Journal of Food Process Engineering, 32(3), 398–424.  https://doi.org/10.1111/j.1745-4530.2007.00224.x.CrossRefGoogle Scholar
  72. Rakesh, V., Seo, Y., Datta, A. K., McCarthy, K. L., & McCarthy, M. J. (2010). Heat transfer during microwave combination heating: Computational modeling and MRI experiments. AICHE Journal, 56(9), 2468–2478.  https://doi.org/10.1002/aic.12162.CrossRefGoogle Scholar
  73. Sakai, N., & Hanzawa, T. (1994). Applications and advances in far-infrared heating in Japan. Trends in Food Science & Technology, 5(11), 357–362.  https://doi.org/10.1016/0924-2244(94)90213-5.CrossRefGoogle Scholar
  74. Sakiyan, O. (2015). Optimization of formulation of soy-cakes baked in infrared-microwave combination oven by response surface methodology. Journal of Food Science and Technology, 52, 2910–2917.  https://doi.org/10.1007/s13197-014-1342-6.CrossRefPubMedGoogle Scholar
  75. Sakiyan, O., Sumnu, G., Sahin, S., & Meda, V. (2007). Investigation of dielectric properties of different cake formulations during microwave and infrared?microwave combination baking. Journal of Food Science, 72(4), E205–E213.  https://doi.org/10.1111/j.1750-3841.2007.00325.x.CrossRefPubMedGoogle Scholar
  76. Sakiyan, O., Sumnu, G., Sahin, S., Meda, V., Koksel, H., & Chang, P. (2011). A study on degree of starch gelatinization in cakes baked in three different ovens. Food and Bioprocess Technology, 4(7), 1237–1244.  https://doi.org/10.1007/s11947-009-0210-2.CrossRefGoogle Scholar
  77. Sánchez-Pardo, M. E., Ortiz-Moreno, A., Mora-Escobedo, R., Chanona-Pérez, J. J., & Necoechea-Mondragón, H. (2008). Comparison of crumb microstructure from pound cakes baked in a microwave or conventional oven. LWT - Food Science and Technology, 41(4), 620–627.  https://doi.org/10.1016/J.LWT.2007.05.003.CrossRefGoogle Scholar
  78. Sánchez-Pardo, M. E., Ortiz-Moreno, A., García-Zaragoza, F. J., Necoechea-Mondragón, H., & Chanona-Pérez, J. J. (2012). Comparison of pound cake baked in a two cycle microwave-toaster oven and in conventional oven. LWT - Food Science and Technology, 46(1), 356–362.  https://doi.org/10.1016/J.LWT.2011.08.013.CrossRefGoogle Scholar
  79. Sandu, C. (1986). Infrared radiative drying in food engineering: A process analysis. Biotechnology Progress, 2(3), 109–119.  https://doi.org/10.1002/btpr.5420020305.CrossRefPubMedGoogle Scholar
  80. Sarkar, A., & Singh, R. P. (2004). Air impingement technology for food processing: Visualization studies. LWT - Food Science and Technology, 37(8), 873–879.  https://doi.org/10.1016/J.LWT.2004.04.005.CrossRefGoogle Scholar
  81. Sarkar, A., Nitin, N., Karwe, M. V., & Singh, R. P. (2006). Fluid flow and heat transfer in air jet impingement in food processing. Journal of Food Science, 69(4), CRH113–CRH122.  https://doi.org/10.1111/j.1365-2621.2004.tb06315.x.CrossRefGoogle Scholar
  82. Sato, N., Sato, M., & Nagashima, A. (1991). Bread improver and method of producing bread. European Patent Application, 91306669(2).Google Scholar
  83. Sevimli, K. M., Sumnu, G., & Sahin, S. (2005). Optimization of halogen lamp–microwave combination baking of cakes: A response surface methodology study. European Food Research and Technology, 221(1–2), 61–68.  https://doi.org/10.1007/s00217-004-1128-6.CrossRefGoogle Scholar
  84. Shelke, K., Faubion, J. M., & Hoseney, R. C. (1990). The dynamics of cake baking as studied by a combination of viscometry and electrical resistance oven heating. Cereal Chemistry, 67(6), 575–580.Google Scholar
  85. Shyu, Y. S., Sung, W. C., Chang, M. H., & Hwang, J. Y. (2008). Effect of far-infrared oven on the qualities of bakery products. Journal of Culinary Science & Technology, 6(2–3), 105–118.  https://doi.org/10.1080/15428050802336955.CrossRefGoogle Scholar
  86. Singh, R. P. & Heldman. (2009). Indroduction to Food Engineering. Academic Press.Google Scholar
  87. Skjoldebrand, C., 2001. Infrared heating. In: P. Richardson (Ed.), Thermal technologies in food processing (pp. 208–228). Elsevier.Google Scholar
  88. Skjöldebrand, C., & Andersson, C. (1989). A comparison of infrared bread baking and conventional baking. Journal of Microwave Power and Electromagnetic Energy, 24(2), 91–101.  https://doi.org/10.1080/08327823.1989.11688080.CrossRefGoogle Scholar
  89. Skjöldebrand, C., Ellbjär, C., Andersson, C. G., & Eriksson, T. S. (1988). Optical properties of bread in the near-infrared range. Journal of Food Engineering, 8(2), 129–139.  https://doi.org/10.1016/0260-8774(88)90059-3.CrossRefGoogle Scholar
  90. Sumnu, G. (2001). A review on microwave baking of foods. International Journal of Food Science & Technology, 36(2), 117–127.  https://doi.org/10.1046/j.1365-2621.2001.00479.x.CrossRefGoogle Scholar
  91. Sumnu, S. G., & Ozkoc, S. O. (2010). Infrared baking and roasting. In Z. Pan & G. Atungulu (Eds.), Infrared heating for food and agriculture processing (pp. 203–224). Boca Raton: CRC Press.CrossRefGoogle Scholar
  92. Sumnu, G., Sahin, S., & Sevimli, M. (2005). Microwave, infrared and infrared-microwave combination baking of cakes. Journal of Food Engineering, 71(2), 150–155.  https://doi.org/10.1016/J.JFOODENG.2004.10.027.CrossRefGoogle Scholar
  93. Sumnu, G., Datta, A. K., Sahin, S., Keskin, S. O., & Rakesh, V. (2007). Transport and related properties of breads baked using various heating modes. Journal of Food Engineering, 78(4), 1382–1387.  https://doi.org/10.1016/J.JFOODENG.2006.01.010.CrossRefGoogle Scholar
  94. Tank, A., Chhanwal, N., Indrani, D., & Anandharamakrishnan, C. (2014). Computational fluid dynamics modeling of bun baking process under different oven load conditions. Journal of Food Science and Technology, 51(9), 2030–2037.  https://doi.org/10.1007/s13197-012-0736-6.CrossRefPubMedGoogle Scholar
  95. Therdthai, N., & Zhou, W. (2003). Recent advances in the studies of bread baking process and their impacts on the bread baking technology. Food Science and Technology Research, 9(3), 219–226.  https://doi.org/10.3136/fstr.9.219.CrossRefGoogle Scholar
  96. Thorvaldsson, K., & Janestad, H. (1999). A model for simultaneous heat, water and vapour diffusion. Journal of Food Engineering, 40(3), 167–172.  https://doi.org/10.1016/S0260-8774(99)00052-7.CrossRefGoogle Scholar
  97. Tireki, S., Sumnu, G., & Esin, A. (2006). Effect of microwave, infrared and infrared-assisted microwave heating on the drying rate of bread dough. American Journal of Food Technology, 1(2), 82–93.CrossRefGoogle Scholar
  98. Torres, M. D., Arufe, S., Chenlo, F., & Moreira, R. (2017). Coeliacs cannot live by gluten-free bread alone—every once in awhile they need antioxidants. International Journal of Food Science & Technology, 52(1), 81–90.  https://doi.org/10.1111/ijfs.13287.CrossRefGoogle Scholar
  99. Turabi, E., Sumnu, G., & Sahin, S. (2008a). Optimization of baking of rice cakes in infrared–microwave combination oven by response surface methodology. Food and Bioprocess Technology, 1(1), 64–73.  https://doi.org/10.1007/s11947-007-0003-4.CrossRefGoogle Scholar
  100. Turabi, E., Sumnu, G., & Sahin, S. (2008b). Rheological properties and quality of rice cakes formulated with different gums and an emulsifier blend. Food Hydrocolloids, 22(2), 305–312.  https://doi.org/10.1016/J.FOODHYD.2006.11.016.CrossRefGoogle Scholar
  101. Turabi, E., Sumnu, G., & Sahin, S. (2010). Quantitative analysis of macro and micro-structure of gluten-free rice cakes containing different types of gums baked in different ovens. Food Hydrocolloids, 24(8), 755–762.  https://doi.org/10.1016/j.foodhyd.2010.04.001.CrossRefGoogle Scholar
  102. Vanin, F. M., Lucas, T., & Trystram, G. (2009). Crust formation and its role during bread baking. Trends in Food Science & Technology, 20(8), 333–343.  https://doi.org/10.1016/J.TIFS.2009.04.001.CrossRefGoogle Scholar
  103. Wade, P. (1987). Biscuit baking by near-infrared radiation. Journal of Food Engineering, 6(3), 165–175.  https://doi.org/10.1016/0260-8774(87)90022-7.CrossRefGoogle Scholar
  104. Wählby, U., Skjöldebrand, C., & Junker, E. (2000). Impact of impingement on cooking time and food quality. Journal of Food Engineering, 43(3), 179–187.  https://doi.org/10.1016/S0260-8774(99)00149-1.CrossRefGoogle Scholar
  105. Walker, C. E. (1991). Air-impingement drying and toasting of ready-to-eat cereals. Cereal Foods World, 36(10), 871–877.Google Scholar
  106. Walker, C. E., & Li, A. (1993). Impingement oven technology. Part III: Combining impingement with microwave. American Institute of Baking Technology Bulletin, 15(9), 1–6.Google Scholar
  107. Wang, W.-C., & Sastry, S. K. (1997). Starch gelatinization in ohmic heating. Journal of Food Engineering, 34(3), 225–242.  https://doi.org/10.1016/S0260-8774(97)00085-X.CrossRefGoogle Scholar
  108. Wang, J., & Sheng, K. C. (2004). Modeling of muti-layer far-infrared dryer. Drying Technology, 22(4), 809–820.  https://doi.org/10.1081/DRT-120034264.CrossRefGoogle Scholar
  109. Whorton, C., & Reineccius, G. (1990). Current developments in microwave flavors. Cereal Foods World (USA), 35, 553–559.Google Scholar
  110. Willyard, M. R. (1998). Conventional browning and microwave baking of yeast raised dough. Cereal Foods World (USA), 43, 131–138.Google Scholar
  111. Xue, J., & Walker, C. E. (2003). Humidity change and its effects on baking in an electrically heated air jet impingement oven. Food Research International, 36(6), 561–569.  https://doi.org/10.1016/S0963-9969(02)00221-1.CrossRefGoogle Scholar
  112. Yaylayan, V. A., & Roberts, D. D. (2001). Generation and release of food aromas under microwave heating. New York: Marcel Dekker.Google Scholar
  113. Yin, Y., & Walker, C. E. (1995). A quality comparison of breads baked by conventional versus nonconventional ovens: A review. Journal of the Science of Food and Agriculture, 67(3), 283–291.  https://doi.org/10.1002/jsfa.2740670302.CrossRefGoogle Scholar
  114. Zhou, W., & Hui, Y. H. (2014). Bakery Products Science and Technology. West Sussex: John Wiley & Sons.CrossRefGoogle Scholar
  115. Zhou, W., & Therdthai, N. (2007). Three-dimensional modeling of a continuous industrial baking process. In D. W. Sun (Ed.), Computational fluid dynamics in food processing (pp. 287–312). Boca Raton: CRC Press.CrossRefGoogle Scholar
  116. Zuckerman, N., & Lior, N. (2006). Jet impingement heat transfer: Physics, correlations, and numerical modeling. Advances in Heat Transfer, 39, 565–631.  https://doi.org/10.1016/S0065-2717(06)39006-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Food EngineeringInstitute of Chemical TechnologyMumbaiIndia
  2. 2.Indian Institute of Food Processing TechnologyThanjavurIndia

Personalised recommendations