Food and Bioprocess Technology

, Volume 12, Issue 2, pp 199–210 | Cite as

Physicochemical and Phytochemical Characterization and Storage Stability of Freeze-dried Encapsulated Pomegranate Peel Anthocyanin and In Vitro Evaluation of Its Antioxidant Activity

  • Elham AzarpazhoohEmail author
  • Parvin Sharayei
  • Shahin Zomorodi
  • Hosahalli S. Ramaswamy
Original Paper


The acidified ethanol extract of pomegranate (Punica granatum L.) peel bioactive compounds was freeze-dried and encapsulated using a combination of maltodextrin (MDX 5, 10, and 15%) with calcium alginate (0.1%) with a weight ratio (w/w) of 1:5 (extract/wall material). The effects of various parameters on pomegranate peel extraction (POPx) and POPx-encapsulated powder were analyzed on bioactive components, physicochemical, morphological properties, and storage stability. The results revealed that process yield was positively influenced by increasing MDX concentration, due to the increase on mixture content. Encapsulated powder with 15% MDX had the highest total phenolic compounds (TPC, 73.1 mg GA/kg), the total anthocyanin content (TAC, 40.2 mg c3g/kg dmp and antioxidant capacity by FRAP, 405 (Fe2+, μmol/l)), the DPPH assay (RSA, 65.1%), the lowest IC50, 0.56 ± 0.02 mg/ml, and the lowest glass transition temperature indicating that the highest antioxidant capacity among other wall materials. In respect to morphology, the particles of encapsulated powders with high concentration of MDX were larger and smoother. Stability and half-life of encapsulated powders were measured from 42 days of storage study at 4 °C and 25 °C, and 52 and 75% relative humidity. Storage tests revealed first-order degradation kinetics for anthocyanin. The TAC of the PoPx-microencapsulated powders with wall material of 15% and control decreased by 18% and 33%, respectively, after 42 days storage at 4 °C, while at the storage temperature of 25 °C, the decreases were in the order of 24% and 38%, respectively, over the same period of time. The highest anthocyanin content was observed in the freeze-dried MDX 15%-encapsulated powder at 4 °C storage temperature and 75% relative humidity with a half-life (t1/2) of 115 days, and the reaction rate constant (k) of 0.64 × 10−2 min−1.


Anthocyanin Encapsulation Pomegranate peel Freeze drying 







Total phenolic compounds


Radical scavenging activity


Ferric reducing antioxidant power


Total anthocyanin content


The concentration of extract required to scavenge 50% of 2, 2-diphenyl-1-picrylhydrazyl free radical


Pomegranate peel


Pomegranate peel extract


Glass transition temperature




Funding Information

This work is financially supported by the Iran National Scientific Foundation (INSF) and Agricultural Engineering Research Institute (AERI).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Ahmed, M., Akter, M. S., Lee, J. C., & Eun, G. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT-Food Science and Technology, 43(9), 1307–1312.CrossRefGoogle Scholar
  2. Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2011). Black currant polyphenols: their storage stability and microencapsulation. Industrial Crops and Products, 34(2), 1301–1309.CrossRefGoogle Scholar
  3. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry, 239(1), 70–76.CrossRefGoogle Scholar
  4. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30.CrossRefGoogle Scholar
  5. Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried Amaranthus Betacyanin pigments. Journal of Food Science, 65(7), 1248–1252.CrossRefGoogle Scholar
  6. Cemeroglu, B., Velioglu, S., & Isik, S. (1994). Degradation kinetics of anthocyanins in sour cherry juice and concentrate. Journal of Food Science, 59(6), 1216–1218.CrossRefGoogle Scholar
  7. Da Silva Carvalho, A. G., da Costa Machado, M. T., da Silva, V. M., Sartoratto, A., Rodrigues, R. A. F., & Hubinger, M. D. (2016). Physical properties and morphology of spray dried microparticles containing anthocyanins of jussara (Euterpe edulis Martius) extract. Powder Technology, 294, 421–428.CrossRefGoogle Scholar
  8. Deladino, L., Pablo, S. A., Alba, S. N., & Miriam, N. M. (2007). Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymers, 71(1), 126–134.CrossRefGoogle Scholar
  9. Desai, K., Goud, H., & Hyun, J. P. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23(7), 1361–1394.CrossRefGoogle Scholar
  10. Ersus, S., & Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering, 80(3), 805–812.CrossRefGoogle Scholar
  11. Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139–1147.CrossRefGoogle Scholar
  12. Fang, Z., & Bhandari, B. (2012). Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Research International, 48(2), 478–483.CrossRefGoogle Scholar
  13. Flores, F. P., Singh, R. K., & Kong, F. (2014). Physical and storage properties of spray-dried blueberry pomace extract with whey protein isolate as wall material. Journal of Food Engineering, 137, 1–6.CrossRefGoogle Scholar
  14. Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 40(9), 1107–1121.CrossRefGoogle Scholar
  15. Giusti, M. M., & Wrolstad, R. E. (2001). In R. E. Wrolstad (Ed.), Current protocols in food analytical chemistry (pp. 1–13). New York: John Wiley & Sons.Google Scholar
  16. Gözlekçi, S., Saraçoğlu, O., Ebru Onursal, E., & Mustafa Özgen, M. (2011). Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharmacognosy Magazine, 7(26), 161–164.CrossRefGoogle Scholar
  17. Gradinarua, G., Biliaderisb, C. G., Kallithrakac, S., Kefalasa, P., & Garcia-Viguerad, C. (2003). Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: effects of copigmentation and glass transition. Food Chemistry, 83(3), 423–436.CrossRefGoogle Scholar
  18. Hager, T. J., Howard, L. R., & Prior, R. L. (2008). Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blackberry products. Journal of Agricultural and Food Chemistry, 56(3), 689–695.CrossRefGoogle Scholar
  19. Hamedi, F., Mohebbi, M., Shahidi, F., & Azarpazhooh, E. (2018). Ultrasound-assisted osmotic treatment of model food impregnated with pomegranate peel phenolic compounds: mass transfer, texture, and phenolic evaluations. Food and Bioprocess Technology, 11(5), 1060–1074.CrossRefGoogle Scholar
  20. Iversen, C. K. (1999). Black currant nectar: effect of processing and storage on anthocyanin and ascorbic acid content. Journal of Food Science, 64(1), 37–41.CrossRefGoogle Scholar
  21. Jafari, S. M., & Mahdavi-Khazaei, K. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 140, 20–25.CrossRefGoogle Scholar
  22. Jalil, R., & Nixon, J. R. (1990). Microencapsulation using poly(DL-lactic acid) II: effect of polymer molecular weight on the microcapsule properties. Journal of Microencapsulation, 7(2), 245–254.CrossRefGoogle Scholar
  23. Kaderides, K., Goulaa, M. A., & Adamopoulosb, K. G. (2015). A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation Author links open overlay panel. Innovative Food Science & Emerging Technologies, 31, 204–215.CrossRefGoogle Scholar
  24. Kanatt, S. R., Chander, R., & Sharma, A. (2010). Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. International Journal of Food Science and Technology, 45(2), 216–222.CrossRefGoogle Scholar
  25. Karimi, M., Fathi, M., Sheykholeslam, Z., Sahraiyan, B., & Naghipoor, F. (2012). Effect of different processing parameters on quality factors and image texture features of bread. Journal of Bioprocessing and Biotechniques, 2(5), 1–7.CrossRefGoogle Scholar
  26. Kaushik, V., & Roos, Y. H. (2007). Limonene encapsulation in freeze-drying of gum Arabic-sucrose-gelatin systems. LWT, Food Science and Technology, 40(8), 1381–1391.CrossRefGoogle Scholar
  27. Khazaei, K. M., Jafari, S., Ghorbani, M., & Kakhki, A. H. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105, 57–62.CrossRefGoogle Scholar
  28. Liu, L., Sun, Y., Laura, T., Liang, X., Ye, H., & Zeng, X. (2009). Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex Kudingcha C.J. Tseng. Food Chemistry, 112(1), 35–41.CrossRefGoogle Scholar
  29. Mahdavi, S. A., Jafari, S. M., Ghorbani, M., & Assadpoor, E. (2014). Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Drying Technology, 32(5), 509–518.CrossRefGoogle Scholar
  30. Mirdehghan, S. H., & Rahemi, H. (2007). Seasonal changes of mineral nutrients and phenolics in pomegranate (Punica granatum L) fruit. HortScience, 111, 120–127.Google Scholar
  31. Nayak, C. A., & Rastogi, K. N. (2010). Effect of selected additives on microencapsulation of anthocyanin by spray drying. Drying Technology, 28(12), 1396–1404.CrossRefGoogle Scholar
  32. Opara, L. U., Al-Ani, M. R., & Al-Shuaibi, Y. S. (2009). Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology, 2(3), 315–321.CrossRefGoogle Scholar
  33. Pan, Z., Qu, W., Ma, H., Atungulu, G. G., & McHugh, T. H. (2011). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 18(5), 1249–1257.CrossRefGoogle Scholar
  34. Parrarud, S., & Pranee, A. (2010). Microencapsulation of Zn-chlorophyll pigment from pandan leaf by spray drying and its characteristic. International Food Research Journal, 17, 1031–1042.Google Scholar
  35. Prakash, A., Mathur, K., Vishwakarma, A., Vuppu, S., & Mishra, B. (2013). Comparative assay of antioxidant and antibacterial properties of Indian culinary seasonal fruit peel extracts obtained from Vellore, Tamilnadu. International Journal of Pharmaceutical Sciences Review and Research, 19(1), 131–135.Google Scholar
  36. Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple-and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885–894.CrossRefGoogle Scholar
  37. Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology, 45(7), 1386–1394.CrossRefGoogle Scholar
  38. Santos, D. T., & Meireles, M. A. A. (2011). Optimization of bioactive compounds extraction from jabuticaba (Myrciaria cauliflora) skins assisted by high pressure CO2. Innovative Food Science and Emerging Technologies, 12(3), 398–406.CrossRefGoogle Scholar
  39. Selim, K., Tsimidou, M., & Biliaderis, C. G. (2000). Kinetic studies of degradation of saffron carotenoids encapsulated amorphous polymer matrices. Food Chemistry, 71(2), 199–206.CrossRefGoogle Scholar
  40. Shabtay, A., Eitam, H., Tadmor, Y., Orlov, A., Meir, A., Weinberg, P., Weinberg, Z. G., Chen, Y., Brosh, A., Izhaki, I., & Kerem, Z. (2008). Nutritive and antioxidative potential of fresh and stored pomegranate industrial byproduct as a novel beef cattle feed. Agricultural and Food Chemistry, 56(21), 10063–10070.CrossRefGoogle Scholar
  41. Silva, S., Costa, E. M., Calhau, C., Morais, R. M., & Pintado, M. E. (2017). Anthocyanin extraction from plant tissues: a review. Critical Reviews in Food Science and Nutrition, 57(14), 3072–3083.CrossRefGoogle Scholar
  42. Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total polyphenols and other oxidation substrates and antioxidants by means of folin–ciocalteu reagent. Methods in Enzymology, 299, 152–178.CrossRefGoogle Scholar
  43. Tabaraki, R., Heidarizadi, E., & Benvidi, A. (2012). Optimization of ultrasonic assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Separation and Purification Technology, 98, 16–23.CrossRefGoogle Scholar
  44. Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418.CrossRefGoogle Scholar
  45. Tonon, R. V., Brabet, C., & Hubinger, M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried acai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907–914.CrossRefGoogle Scholar
  46. Wang, W. D., & Xu, S. Y. (2007). Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering, 82(3), 271–275.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Agricultural Engineering Research DepartmentKhorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEOMashhadIran
  2. 2.Agricultural Engineering Research Department, West Azerbaijan Agricultural and Natural Resources Research and Education CenterAREEOUrmiaIran
  3. 3.Department of Food Science and Agricultural ChemistryMacdonald Campus of McGill UniversitySainte-Anne-de-BellevueCanada

Personalised recommendations