Food and Bioprocess Technology

, Volume 12, Issue 1, pp 27–38 | Cite as

High Performance of Asymmetric Alumina Hollow Fiber Membranes for the Clarification of Genipap (Genipa americana L.) Fruit Extract

  • Natália Mazzarioli Terra
  • Grasiele Scaramal Madrona
  • Franz Berbert Ferreira
  • Vicelma Luiz Cardoso
  • Miria Hespanhol Miranda ReisEmail author
Original Paper


Membrane filtration processes represent a suitable alternative for fruit juice treatment, but the applied membrane should present high stability and permeability. Here, we propose the development and application of ceramic asymmetric hollow fiber membranes for genipap extract clarification. Genipap is an exotic fruit from Central and South America with considerable concentration of phenolic and iridoid compounds. The dual-layer ceramic hollow fiber membrane was fabricated by a single-step co-extrusion and co-sintering process. The developed hollow fibers presented the desired asymmetric structure, with an inner finger-like region that guaranteed a suitable permeate flux (191 L h−1 m−2 at 1 bar), while the outer sponge-like layer was responsible for solid retentions and for the membrane mechanical resistance. Reductions in turbidity, total polyphenol content, and genipin concentration were of 52, 17, and 4%, respectively. Mathematical modeling of the experimental flux decay showed that pore blocking was the main fouling mechanism during filtrations of genipap extract through the asymmetric hollow fibers. The presence of microchannels with larger pore size in the inner surface of the fiber probably mitigated cake formation. The increase in the transmembrane pressure from 1 to 2 bar did not improve the permeation flux through the membrane since the fouling layer resistance was considerably higher at 2 bar than at 1 bar. Thus, asymmetric ceramic hollow fibers are suggested for juice fruit clarification with improved permeate flux and clarification degree.


Membrane Asymmetric ceramic hollow fiber Genipap 



We acknowledge financial support from FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).


  1. Bagci, P. O. (2014). Effective clarification of pomegranate juice: A comparative study of pretreatment methods and their influence on ultrafiltration flux. Journal of Food Engineering, 141, 58–64.CrossRefGoogle Scholar
  2. Bentes, A. D., & Mercadante, A. Z. (2014). Influence of the stage of ripeness on the composition of iridoids and phenolic compounds in genipap (Genipa americana L.). Journal of Agricultural and Food Chemistry, 62(44), 10800–10808.CrossRefGoogle Scholar
  3. Bessa, L. P., Terra, N. M., Cardoso, V. L., & Reis, M. H. M. (2017). Macro-porous dolomite hollow fibers sintered at different temperatures toward widened applications. Ceramics International, 43(18), 16283–16291.CrossRefGoogle Scholar
  4. Bindes, M. M. M., Cardoso, V. L., Reis, M. H. M., & Boffito, D. C. (2019). Maximisation of the polyphenols extraction yield from green tea leaves and sequential clarification. Journal of Food Engineering, 241, 97–104.CrossRefGoogle Scholar
  5. Cai, M., Hou, W., Li, Z., Lv, Y., & Sun, P. (2017). Understanding nanofiltration fouling of phenolic compounds in model juice solution with two membranes. Food and Bioprocess Technology, 10(12), 2123–2131.CrossRefGoogle Scholar
  6. Chandini, S. K., Rao, L. J., & Subramanian, R. (2013). Membrane clarification of black tea extracts. Food and Bioprocess Technology, 6(8), 1926–1943.CrossRefGoogle Scholar
  7. Cimini, A., & Moresi, M. (2015). Pale lager clarification using novel ceramic hollow-fiber membranes and CO<inf>2</inf> backflush program. Food and Bioprocess Technology, 8(11), 2212–2224.CrossRefGoogle Scholar
  8. Costa, P. A., Ballus, C. A., Teixeira-Filho, J., & Godoy, H. T. (2010). Phytosterols and tocopherols content of pulps and nuts of Brazilian fruits. Food Research International, 43(6), 1603–1606.CrossRefGoogle Scholar
  9. de Santana Magalhães, F., Cardoso, V. L., & Reis, M. H. M. (2018). Sequential process with bioadsorbents and microfiltration for clarification of pequi (Caryocar brasiliense Camb.) fruit extract. Food and Bioproducts Processing, 108, 105–116.CrossRefGoogle Scholar
  10. de Wit, P., van Daalen, F. S., & Benes, N. E. (2017). The mechanical strength of a ceramic porous hollow fiber. Journal of Membrane Science, 524, 721–728.CrossRefGoogle Scholar
  11. Domingues, R. C. C., Ramos, A. A., Cardoso, V. L., & Reis, M. H. M. (2014). Microfiltration of passion fruit juice using hollow fibre membranes and evaluation of fouling mechanisms. Journal of Food Engineering, 121(1), 73–79.CrossRefGoogle Scholar
  12. Ennouri, M., Ben Hassan, I., Ben Hassen, H., Lafforgue, C., Schmitz, P., & Ayadi, A. (2015). Clarification of purple carrot juice: Analysis of the fouling mechanisms and evaluation of the juice quality. Journal of Food Science and Technology, 52(5), 2806–2814.PubMedCrossRefGoogle Scholar
  13. García-Fernández, L., Wang, B., García-Payo, M. C., Li, K., & Khayet, M. (2017). Morphological design of alumina hollow fiber membranes for desalination by air gap membrane distillation. Desalination, 420, 226–240.CrossRefGoogle Scholar
  14. Gil, A. G., Reis, M. H. M., Chadwick, D., Wu, Z., & Li, K. (2015). A highly permeable hollow fibre substrate for Pd/Al2O3 composite membranes in hydrogen permeation. International Journal of Hydrogen Energy, 40(8), 3249–3258.CrossRefGoogle Scholar
  15. Gulec, H. A., Bagci, P. O., & Bagci, U. (2017). Clarification of apple juice using polymeric ultrafiltration membranes: A comparative evaluation of membrane fouling and juice quality. Food and Bioprocess Technology, 10(5), 875–885.CrossRefGoogle Scholar
  16. Hatim, M. D. I., Tan, X. Y., Wu, Z. T., & Li, K. (2011). Pd/Al2O3 composite hollow fibre membranes: Effect of substrate resistances on H-2 permeation properties. Chemical Engineering Science, 66(6), 1150–1158.CrossRefGoogle Scholar
  17. Hermia, J. (1982). Constant pressure blocking filtration laws—application to power-law non-Newtonian fluids. Transactions. Institution of Chemical Engineers, 60(3), 183–187.Google Scholar
  18. Hubadillah, S. K., Othman, M. H. D., Matsuura, T., Rahman, M. A., Jaafar, J., Ismail, A. F., & Amin, S. Z. M. (2018). Green silica-based ceramic hollow fiber membrane for seawater desalination via direct contact membrane distillation. Separation and Purification Technology, 205, 22–31.CrossRefGoogle Scholar
  19. Jeon, S., Karkhanechi, H., Fang, L.-F., Cheng, L., Ono, T., Nakamura, R., & Matsuyama, H. (2018). Novel preparation and fundamental characterization of polyamide 6 self-supporting hollow fiber membranes via thermally induced phase separation (TIPS). Journal of Membrane Science, 546(Supplement C), 1–14.CrossRefGoogle Scholar
  20. Kingsbury, B. F. K., & Li, K. (2009). A morphological study of ceramic hollow fibre membranes. Journal of Membrane Science, 328(1–2), 134–140.CrossRefGoogle Scholar
  21. Kumar, B., Smita, K., Cumbal, L., Camacho, J., Hernández-Gallegos, E., de Guadalupe Chávez-López, M., Grijalva, M., & Andrade, K. (2016). One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications. Materials Science and Engineering: C, 62, 725–731.CrossRefGoogle Scholar
  22. Lee, M., Wang, B., Wu, Z., & Li, K. (2015). Formation of micro-channels in ceramic membranes—Spatial structure, simulation, and potential use in water treatment. Journal of Membrane Science, 483, 1–14.CrossRefGoogle Scholar
  23. Lee, M., Wang, B., & Li, K. (2016). New designs of ceramic hollow fibres toward broadened applications. Journal of Membrane Science, 503, 48–58.CrossRefGoogle Scholar
  24. Liu, S., Li, K., & Hughes, R. (2003). Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method. Ceramics International, 29(8), 875–881.CrossRefGoogle Scholar
  25. Luyten, J., Buekenhoudt, A., Adriansens, W., Cooymans, J., Weyten, H., Servaes, F., & Leysen, R. (2000). Preparation of LaSrCoFeO3−x membranes. Solid State Ionics, 135(1), 637–642.CrossRefGoogle Scholar
  26. Machado, M. T. C., Mello, B. C. B. S., & Hubinger, M. D. (2015). Evaluation of pequi (Caryocar Brasiliense Camb.) aqueous extract quality processed by membranes. Food and Bioproducts Processing, 95, 304–312.CrossRefGoogle Scholar
  27. Mohammad, A. W., Ng, C. Y., Lim, Y. P., & Ng, G. H. (2012). Ultrafiltration in food processing industry: Review on application, membrane fouling, and fouling control. Food and Bioprocess Technology, 5(4), 1143–1156.CrossRefGoogle Scholar
  28. Nourbakhsh, H., Alemi, A., Emam-Djomeh, Z., & Mirsaeedghazi, H. (2014). Effect of processing parameters on fouling resistances during microfiltration of red plum and watermelon juices: A comparative study. Journal of Food Science and Technology, 51(1), 168–172.PubMedCrossRefGoogle Scholar
  29. Omena, C. M. B., Valentim, I. B., Guedes, G. S., Rabelo, L. A., Mano, C. M., Bechara, E. J. H., Sawaya, A. C. H. F., Trevisan, M. T. S., da Costa, J. G., Ferreira, R. C. S., Sant'Ana, A. E. G., & Goulart, M. O. F. (2012). Antioxidant, anti-acetylcholinesterase and cytotoxic activities of ethanol extracts of peel, pulp and seeds of exotic Brazilian fruits: Antioxidant, anti-acetylcholinesterase and cytotoxic activities in fruits. Food Research International, 49(1), 334–344.CrossRefGoogle Scholar
  30. Ono, M., Ishimatsu, N., Masuoka, C., Yoshimitsu, H., Tsuchihashi, R., Okawa, M., Kinjo, J., Ikeda, T., & Nohara, T. (2007). Three new monoterpenoids from the fruit of Genipa americana. Chemical & Pharmaceutical Bulletin, 55(4), 632–634.CrossRefGoogle Scholar
  31. Onsekizoglu, P. (2013). Production of high quality clarified pomegranate juice concentrate by membrane processes. Journal of Membrane Science, 442, 264–271. Scholar
  32. Onsekizoglu, P., Bahceci, K. S., & Acar, M. J. (2010). Clarification and the concentration of apple juice using membrane processes: A comparative quality assessment. Journal of Membrane Science, 352(1–2), 160–165.CrossRefGoogle Scholar
  33. Ramos-de-la-Pena, A. M., Renard, C. M. G. C., Montanez, J. C., de la Luz Reyes-Vega, M., & Carlos Contreras-Esquivel, J. (2015). Ultrafiltration for genipin recovery technologies after ultrasonic treatment of genipap fruit. Biocatalysis and Agricultural Biotechnology, 4(1), 11–16.CrossRefGoogle Scholar
  34. Ramos-de-la-Pena, A. M., Renard, C., Montanez, J., Reyes-Vega, M. D., & Contreras-Esquivel, J. C. (2016). A review through recovery, purification and identification of genipin. Phytochemistry Reviews, 15(1), 37–49.CrossRefGoogle Scholar
  35. Reis, M. H. M., Da Silva, F. V., Andrade, C. M. G., Rezende, S. L., Wolf MacIel, M. R., & Bergamasco, R. (2009). Clarification and purification of aqueous stevia extract using membrane separation process. Journal of Food Process Engineering, 32(3), 338–354.CrossRefGoogle Scholar
  36. Renard, C. M. G. C. (2018). Extraction of bioactives from fruit and vegetables: State of the art and perspectives. LWT, 93, 390–395.CrossRefGoogle Scholar
  37. Ribeiro, L. F., Ribani, R. H., Francisco, T. M. G., Soares, A. A., Pontarolo, R., & Haminiuk, C. W. I. (2015). Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1007, 72–80.CrossRefGoogle Scholar
  38. Silva, F. C., Rossi, D. A., Cardoso, V. L., & Reis, M. H. M. (2016). Stabilization of açaí (Euterpe oleracea mart.) juice by the microfiltration process. Acta Scientiarum - Technology, 38(1), 7–11.CrossRefGoogle Scholar
  39. Simone, S., Conidi, C., Ursino, C., Cassano, A., & Figoli, A. (2016). Clarification of orange press liquors by PVDF hollow Fiber membranes. Membranes, 6(1).Google Scholar
  40. Singleton, V. L. (1985). Citation classic—Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Current Contents/Agriculture Biology & Environmental Sciences, 48, 18.Google Scholar
  41. Sousa, L. D. S., Cabral, B. V., Madrona, G. S., Cardoso, V. L., & Reis, M. H. M. (2016). Purification of polyphenols from green tea leaves by ultrasound assisted ultrafiltration process. Separation and Purification Technology, 168, 188–198.CrossRefGoogle Scholar
  42. Tan, X., Liu, S., & Li, K. (2001). Preparation and characterization of inorganic hollow fiber membranes. Journal of Membrane Science, 188(1), 87–95.CrossRefGoogle Scholar
  43. Tan, X. Y., Li, K., & Teo, W. K. (2005). Odor control using hollow fiber membrane modules. Aiche Journal, 51(5), 1367–1376.CrossRefGoogle Scholar
  44. Terra, N. M., Lemos, C. O. T., Da Silva, F. B., Cardoso, V. L., & Reis, M. H. M. (2016). Characterisation of asymmetric alumina hollow fibres: Application for hydrogen permeation in composite membranes. Brazilian Journal of Chemical Engineering, 33(3), 567–576.CrossRefGoogle Scholar
  45. Terra, N. M., Bessa, L. P., Cardoso, V. L., & Reis, M. H. M. (2018). Graphite coating on alumina substrate for the fabrication of hydrogen selective membranes. International Journal of Hydrogen Energy, 43(3), 1534–1544.CrossRefGoogle Scholar
  46. Todisco, S., Tallarico, P., & Gupta, B. B. (2002). Mass transfer and polyphenols retention in the clarification of black tea with ceramic membranes. Innovative Food Science & Emerging Technologies, 3(3), 255–262.CrossRefGoogle Scholar
  47. Urošević, T., Povrenović, D., Vukosavljević, P., Urošević, I., & Stevanović, S. (2017). Recent developments in microfiltration and ultrafiltration of fruit juices. Food and Bioproducts Processing, 106, 147–161.CrossRefGoogle Scholar
  48. Vuong, Q. V., Golding, J. B., Stathopoulos, C. E., Nguyen, M. H., & Roach, P. D. (2011). Optimizing conditions for the extraction of catechins from green tea using hot water. Journal of Separation Science, 34(21), 3099–3106.PubMedCrossRefGoogle Scholar
  49. Wu, Z. T., Faiz, R., Li, T., Kingsbury, B. F. K., & Li, K. (2013). A controlled sintering process for more permeable ceramic hollow fibre membranes. Journal of Membrane Science, 446, 286–293.CrossRefGoogle Scholar
  50. Zhu, Z., Luo, X., Yin, F., Li, S., & He, J. (2018). Clarification of Jerusalem artichoke extract using ultra-filtration: Effect of membrane pore size and operation conditions. Food and Bioprocess Technology, 11(4), 864–873.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculdade de Engenharia QuímicaUniversidade Federal de UberlândiaUberlândiaBrazil
  2. 2.Departamento de Engenharia de AlimentosUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations